PROJETO ÁRIDAS

Uma Estratégia de Desenvolvimento Sustentável para o Nordeste

GT II - RECURSOS HÍDRICOS

II . 2 - SUSTENTABILIDADE DO DESENVOLVIMENTO DO SEMI-ÁRIDO SOB O PONTO DE VISTA DOS RECURSOS HÍDRICOS

Joaquim Guedes Corrêa Gondim Filho

VERSÃO FINAL Fortaleza-CE Setembro / 94

> Coordenação Geral: SECRETARIA DE PLANEJAMENTO, ORÇAMENTO E COODENAÇÃO DA PRESIDÊNCIA DA REPÚBLICA

> > 711. 2: 63 : 504 (213 . 504)

FILHO JG ARIDA

PROJETO ÁRIDAS

Uma Estratégia de Desenvolvimento Sustentável para o Nordeste

GT II - RECURSOS HÍDRICOS

SUSTENTABILIDADE DO DESENVOLVIMENTO DO SEMI-ÁRIDO SOB O PONTO DE VISTA DOS RECURSOS HÍDRICOS

Joaquim Guedes Corrêa Gondim Filho

Versão final

Fortaleza-CE / Setembro / 94

PROJETO ÁRIDAS

Um esforço colaborativo dos Governos Federal, Estaduais e de Entidades Não-Governamentais, comprometidos com os objetivos do desenvolvimento sustentável no Nordeste.

O ARIDAS conta com o apoio financeiro de Entidades Federais e dos Estados do Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Sergipe e Bahia, particularmente através de recursos do segmento de Estudos do Programa de Apoio ao Governo Federal.

A execução do ARIDAS se dá no contexto da cooperação técnica e institucional entre o Instituto Interamericano de Cooperação para Agricultura-IICA e os Estados, no âmbito do PAPP.

ORGANIZAÇÃO

Coordenação Geral: Antônio Rocha Magalhães

Coordenador Técnico: Ricardo R. Lima

GTI - RECURSOS NATURAIS E MEIO AMBIENTE

Coordenador: Vicente P. P. B. Vieira

GT - II - RECURSOS HÍDRICOS Coordenador: Vicente P. P. B. Vieira

GT III - DESENVOLVIMENTO HUMANO E SOCIAL

Coordenador: Amenair Moreira Silva

GT IV - ORGANIZAÇÃO DO ESPAÇO REGIONAL E AGRICULTURA DE SEQUEIRO

Coordenador: Charles Curt Meller

GT V - ECONOMIA, CIÊNCIA E TECNOLOGIA Coordenador: Antônio Nilson Craveiro Holanda

GT VI - POLÍTICAS DE DESENVOLVIMENTO E MODELO DE GESTÃO

Coordenador: Sérgio Cavalcante Buarque

GT VII - INTEGRAÇÃO COM A SOCIEDADE

Coordenador: Eduardo Bezerra Neto

Cooperação Técnica-Institucional IICA: Carlos L. Miranda (Coordenador)

COORDENAÇÃO GERAL:

Secretaria de Planejamento, Orçamento e Coordenação da Presidência da República Seplan-PR - Esplanada dos Ministérios - Bloco K - sala 849

Telefones: (061) 215-4132 e 215-4112

Fax: (061) 225-4032

PROJETO ÁRIDAS

COLEGIADO DIRETOR

Presidente: Secretário-Executivo da Seplan-PR

Secretário: Coordenador Geral do ARIDAS

Membros:

Secretários-Executivos dos Ministérios do Meio ambiente e Amazônia Legal,

da Educação e Desportos e da Saúde;

Secretário de planejamento e Avaliação da Seplan-PR;

Secretário de Planejamento do Ministério da Ciência e Tecnologia:

Secretário de Irrigação do Ministério da Integração Regional;

Superintendente da Sudene;

Presidente do Banco do Nordeste do Brasil;

Presidente da Embrapa;

Presidente do IBGE:

presidente do Ibama;

Presidente da Codefasv:

Diretor Geral dos Dnocs;

Presidente do Ipea;

Representante da Fundação Esquel Brasil (Organização Não Governamental)

CONSELHO REGIONAL

Membros:

Secretários de Planejamento dos Estados participantes do ARIDAS;

Suplentes: Coordenadores das Unidades Técnicas do PAPP;

Coordenador geral do Aridas;

Representante da Seplan-PR;

Representante da Sudene;

Representante do BNB:

Representante do Ipea;

Representante da Embrapa;

Representante do Codevasf;

Representante da Secretaria de Irrigação do Ministério da Integração Regional;

COMITÊ TÉCNICO

Presidente: Coordenador Geral do aridas;

Membros:

Coordenadores de GT Regionais;

Coordenadores Estaduais;

Representante da Seplan-PR;

Representante da Sudene;

Representante da Embrapa;

Representante do IBGE;

Representante do Codevasf;

Representante da Secretaria de Irrigação/MIR;

Representante do DNAEE;

Representante do Dnocs;

Representante do IICA

SUSTENTABILIDADE DO DESENVOLVIMENTO DO SEMI-ÁRIDO SOB O POSTO DE VISTA DOS RECURSOS HÍDRICOS: RESUMO EXECUTIVO

Sendo a água um recurso natural escasso e vital, é incontestável a necessidade de ser planejado o seu uso, sob a ótica do desenvolvimento sustentável, e a sua utilização com vistas a evitar as limitações ao desenvolvimento econômico e social em razão da escassez, quantitativa ou qualitativa, dos recursos hídricos.

A sustentabilidade de uma região, no que tange aos recursos hídricos, está diretamente associada à limitada disponibilidade do recurso, em termos de quantidade e qualidade, e a capacidade de suporte permanente que pode oferecer às atividades humanas em geral.

Compatibilizar a oferta e a demanda d'água, em face de sua disponibilidade efetiva é, certamente, o caminho que conduz à desejada sustentabilidade dos recursos hídricos.

O presente estudo pretendeu apontar e avaliar, para o Projeto ÁRIDAS, as condições de sustentabilidade do desenvolvimento do semi-árido Nordestino sob o ponto de vista dos recursos hídricos.

O horizonte de planejamento vai até o ano 2020, com análises da situação atual e da situações projetadas para os anos 2000, 2010 e 2020, considerando os cenários tendência e desejável. O cenário complementar de mudança climática, também, foi avaliado.

Na elaboração do presente estudo, tomou-se por base estudos existentes, utilizando-se, principalmente, os dados básicos do Plano de Aproveitamento Integrado dos Recursos Hídricos do Nordeste do Brasil - PLIRHINE, elaborado em 1980, pela SUDENE.

A sustentabilidade de um sistema se evidencia através da análise da evolução das mudanças, ao longo do tempo, de um conjunto de indicadores individuais.

Os indicadores da sustentabilidade, no tocante aos recursos hídricos, estão ligados à quantidade, qualidade, confiabilidade e acessibilidade do elemento água.

As variáveis utilizadas nos cálculos dos indicadores foram:

• Qo - Potencial hídrico da unidade de planejamento. Representa a

quantificação dos recursos hídricos sem a intervenção humana, ou seja, em seu estado natural.

- Qo Disponibilidade hídrica da unidade de planejamento, que é a parcela da potencialidade ativada pela ação do homem, por meio de barragens e poços.
- Qd Demandas de água. Para efeito de planejamento dos recursos hídricos entendem-se por demandas as quantidades de água, medidas em unidades de volume, que devem satisfazer a determinados usuários, sejam eles consuntivos ou não.

A análise da evolução destes indicadores, ao longo do tempo, é que retrataram a sustentabilidade dos recursos hídricos das unidades de planejamento.

O regime hidrológico dos rios intermitentes da Região é bastante crítico, pois depende de um regime pluviométrico irregular, tanto ao nível mensal quanto anual, da natureza geológica das rochas, na grande maioria, cristalina, e de um clima megatérmico de alto poder evaporante.

Além do mais, as disponibilidades hídricas se concentram nas margens dos açudes e dos rios perenes ou perenizados, fazendo com que as áreas mais afastadas das infra-estruturas hídricas, que representam a grande maioria da Região, não tenham acesso a água, não se tendo, por isso, uma avaliação confiável do conflito "oferta x demanda" nessas áreas.

A sustentabilidade dos recursos hídricos do semi-árido Nordestino passa pela adoção de uma política para esses recursos que estabeleça níveis crescentes de proteção contra os efeitos das secas.

O abastecimento da população rural dispersa em toda a região, deve ser realizado, prioritariamente, através de poços, cacimbas e cisternas, como forma de garantir uma fonte de água permanente para o seu abastecimento, evitando com isso a freqüente utilização de carros-pipa para o abastecimento.

As aguadas, de regularização anual, são essenciais à distribuição geográfica da água, mas não oferecem nenhuma resistência às secas. São pontos de água para o gado, em anos de médios ou de pequenos defícits, que acontecem, segundo o PLIRHINE, em 80% do tempo. As aguadas são, portanto, importantes para dar sustentação à estrutura ocupacional, disseminada em todo espaço territorial da Região.

Os pequenos e médios açudes, de regularização interanual, de menor densidade geográfica do que as aguadas, são calculados normalmente para

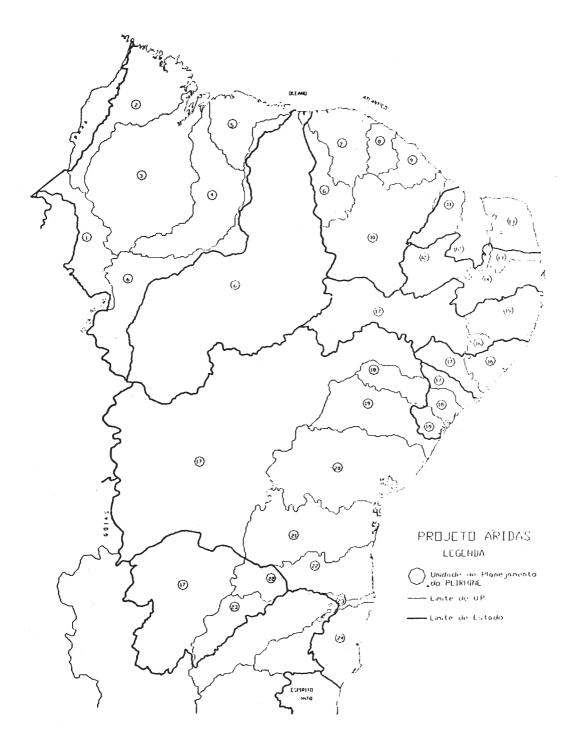


FIGURA 1.1 - UNIDADES DE PLANEJAMENTO DO PLIRHINE

enfrentar mais de um ano de estiagem, e são fundamentais à defesa contra as secas. Eles se destinam sobretudo ao abastecimento humano e agrícola, e são impotentes somente diante das secas prolongadas. Durante os últimos cem anos ocorrerem seis períodos nos quais as secas foram plurianuais (dois ou mais anos consecutivos de seca).

Finalmente, os grandes açudes, de regularização plurianual, projetados para enfrentar vários anos consecutivos de seca, garantiriam a proteção adequada para as secas excepcionais. Estes açudes são destinados para fins múltiplos (abastecimento de cidades, irrigação em larga escala, controle de cheias, recreação, turismo, entre outros usos). Os grandes açudes normalmente estão associados ao desenvolvimento global da bacia onde se situam. Exercem, assim, um papel preponderante no balanço oferta x demanda dos recursos hídricos de uma bacia.

Para garantir a proteção contra as secas excepcionais, que duram vários anos, entretanto, estes grandes açudes pagam um tributo altíssimo. Como eles têm que guadar água dos anos normais para enfrentar os anos de seca, precisam ser mantidos sempre cheios, o que faz com que a sua disponibilidade média anual, para atendimento das demandas, seja muito baixa, cerca de 20 a 30% da sua capacidade de acumulação.

Os açudes constituem equipamentos de transformação e de adaptação das potencialidades naturais, às demandas. O número de reservatórios de uma região depende, portanto, da carência e da variabilidade no tempo e no espaço dos recursos hídricos. Daí a região semi-árida Nordestina constituirse na Região com maior densidade de açudes no País.

Existe hoje um esforço, que está sendo desenvolvido pelos Governos Estaduais e pelo Governo Federal, de aumentar a utilização das águas acumuladas na região, garantindo o abastecimento das cidades situadas fora das margens de rios perenes e/ou perenizados, com a adoção de uma política agressiva de construção de adutoras regionais, que possibilitam o atendimento das populações urbanas, com água tratada de boa qualidade e de forma garantida.

A disponibilidade atual de recursos hídricos da Região, da ordem de 97,3 bilhões de metros cúbicos por ano, se concentra basicamente nas águas de superfície, oriundas de rios perenes ou perenizados pela ação do homem.

Esta disponibilidade está regionalmente muito concentrada nas bacias dos rios São Francisco (UP 17) e Parnaíba (UP 6), que representam 66,64% e 9,32%, respectivamente, da disponibilidade total da Região.

A disponibilidade oriunda da exploração das águas subterrâneas, representam atualmente apenas 4,49% da disponibilidade total.

A demanda total de água da Região é atualmente da ordem de 21,87 bilhões de metros cúbicos por ano, dos quais, 9,29 bilhões de metros cúbicos (42,48%) correspondem a demanda ecológica. A demanda ecológica corresponde a 10% da disponibilidade dos recursos hídricos superficiais das unidades de planejamento.

A demanda de água para os usos consuntivos atualmente é da ordem de 12,58 bilhões de metros cúbicos, dos quais, a irrigação é responsável por 49,28%. O restante é assim distribuído: 23,74% para a demanda urbana, 10,12% para a demanda agroindustrial, 7,40% para a demanda pecuária, 5,94% para a demanda dos distritos industriais, 3,52% para a demanda humana rural difusa.

A irrigação é o principal consumidor das águas da Região. É na bacia do São Francisco (UP 17) que se encontra a maior área irrigada atualmente. O uso mais intenso, para irrigação, das águas do Rio São Francisco pode, no futuro, acarretar conflito com o Setor Elétrico, pois, é nessa bacia que se localiza o maior parque gerador de energia elétrica da região Nordeste. A CHESF argumenta que é de 2,52 MW.ano a perda de geração de energia no seu sistema para cada 1 m3/s de água retirada a montante de suas usinas.

A maior parte dos despejos provenientes de industrias e núcleos urbanos situados no litoral ou próximos deste, são lançados diretamente no mar, prescindindo em princípio, de recursos hídricos para diluição. Tal fato não minimiza a importância de medidas preventivas e corretivas da poluição nas cidades costeiras porque eventualmente comprometem a orla marítima com altos índices de poluição.

A utilização de águas residuárias (reuso de águas) tratadas com tecnologia adequada, é uma alternativa importante a ser estudada, devida a escassez e deterioração dos recursos hídricos da Região Nordeste.

Da análise dos índices de sustentabilidade, se constata que, a situação já existente de demanda reprimida nas unidades de planejamento Leste Potiguar (UP 13), Oriental da Paraíba (UP 14), Oriental de Pernambuco (UP 15), Bacias Alagoanas (UP 16), Vaza Barris - Real (UP 18) e Itapecuru (UP 19), tende a se agravar. No ano 2020, começa a haver demanda reprimida também nas unidades de planejamento Paraguaçu-Salvador (UP 20) e Contas - Jequié (UP 21).

De uma maneira geral, o ritmo de crescimento das demandas nas unidades de planejamento não é acompanhado pelo ritmo de crescimento das disponibilidades programadas.

Embora se consiga um relativo aumento da disponibilidade através da melhoria da eficiência do gerenciamento dos recursos hídricos, e uma redu-

ção na demanda principalmente pela adoção de métodos mais poupadores de água na irrigação, e pela redução das perdas nos sistemas de abastecimento d'água, é imprescindível que a Região disponha de um planejamento de longo prazo no campo dos recursos hídricos. Alias, os Setores de Energia, Transportes e Comunicação, já contam com planejamentos semelhantes a vários anos.

O conflito potencial de uso entre a atividade de irrigação e o Setor Elétrico, assume atualmente, novos contornos, com a disposição do Governo Federal de implementar o Projeto da Transposição de Águas do São Francisco para algumas bacias dos Estados do Ceará, Paraíba e Rio Grande do Norte, já que surge um novo conflito potencial para a utilização das águas do rio São Francisco que é o de irrigar, dentro ou fora da bacia.

Se ocorrer mudanças climáticas na região Nordeste, estas afetarão o projeto, a construção e a operação de seus sistemas de abastecimento de água para os diversos usos.

Ressalte-se, que mesmo considerando que a variabilidade interanual do clima sobre a Região Nordeste do Brasil permaneça inalterada, durante os próximos vinte e cinco anos, existem vários fatores antrópicos que poderão vir a afetar a disponibilidade dos recursos hídricos para as atividades humanas, agrícolas e industriais na Região. Assim, é possível que a disponibilidade de água venha a diminuir em função da redução da cobertura vegetal provocada pela ação antrópica.

Assim, na análise da sustentabilidade futura dos recursos hídricos, é fundamental que se leve em conta, também, o fator antrópico de degradação ambiental.

Ressalte-se a necessidade dos Governos Federal e Estadual desenvolverem esforços maiores para a ampliação do abastecimento d'água das cidades da Região tendo em vista que em 1991, ainda existiam 123 sedes municipais que não contavam com sistema de abastecimento de água.

O estudo da sustentabilidade do desenvolvimento da região Nordeste, do ponto de vista dos recursos hídricos, bem mostram a necessidade da Região dispor de um "Plano de Recursos Hídricos" de longo prazo.

O Plano proposto, deverá ser detalhado a nível de Estado, com a elaboração pelos Governos Estaduais de seus "Planos Estaduais de Recursos Hídricos".

O Plano a ser elaborado, deverá orientar o processo de tomada de decisões com base em alternativas de ações que busquem o equilíbrio quantitativo e qualitativo do Balanço demanda x disponibilidade, evitando que os re-

cursos hídricos venham se converter em um fator limitante ao desenvolvimento econômico e social da Região Nordeste, incorporando os princípios básicos do desenvolvimento sustentável na sua elaboração.

O desenvolvimento dos recursos hídricos deverá ser portanto suficiente para alocar tais recursos, oportunamente, no tempo e no espaço, de modo a atender as solicitações das demandas projetadas.

Finalmente, o Plano Regional deverá também detalhar as ações que ficarão na responsabilidade do Governo Federal e as que ficarão na responsabilidade dos Governos Estaduais.

	UNIDADES DE P	
IARELATI-		

UP	DENOMINAÇÃO	ÁREA (KM2)
01	TOCANTINS MARANHENSE	32.900
02	GURUPÍ	50.600 *
03	MEARIM-GRAJAÚ-PINDARÉ	97.000
04	ITAPECURU	54.000
05	MUNIM-BARREIRINHAS	27.700
06		330.000
07	ACARAÚ-COREAÚ	30.500
80	CURU	11.500
09	FORTALEZA	14.700
10	JAGUARIBE	72.000
11	APODI-MOSSORÓ	15.900
12	PIRANHAS-AÇU	44.100
13		24.440
14	ORIENTAL DA PARAÍBA	23.760
15	ORIENTAL DE PERNAMBUCO	25.300
16	BACIAS ALAGOANAS	17.100
17	SÃO FRANCISCO	487.000 *
18	VAZA-BARRIS	22.330
19	ITAPICURU-REAL	46.100
20	PARAGUAÇU-SALVADOR	81.560
21	CONTAS-JEQUIÉ	62.240
22	PARDO-CACHOEIRA	42.000
23	JEQUITINHONHA	23.200 *
24	EXTREMO SUL DA BAHIA	27.300

FONTE: SUDENE - PLANO DE APROVEITAMENTO
INTEGRADO DOS RECURSOS HÍDRICOS
DO NORDESTE DO BRASIL - PLIRHINE, 1980.
NOTA: (*) - ÁREA DA BACIA DENTRO DO
NORDESTE DA SUDENE.

2 - ESTUDO DA OFERTA DE ÁGUA

Da água precipitada, sobre uma zona ou bacia, parte se evapora ou evapotranspira, uma outra escoa imediatamente sob a forma de escoamento superficial carreada aos rios e ainda outra parte se infiltra nos aquíferos, para constituir a recarga subterrânea. Esta, escoa de maneira muito lenta no seio do subsolo e acabará por ir ao mar, se o aqüífero é costeiro, ou chegar aos rios, se o aquífero é interiorano, formando neste caso o escoamento de base, que se acrescenta ao escoamento superficial. A soma destas duas parcelas forma o escoamento total dos rios ou escoamento fluvial. Esse modelo global de circulação, é a essência do ciclo hidrológico.

Para facilitar a compreensão do presente estudo, considerou-se necessário conceituar: recursos, potencialidades e disponibilidades. Tendo em vista que a maioria dos dados básicos utilizados tem origem no PLIRHINE, utilizou-se a mesma conceituação apresentada no Relatório de Recursos Hídricos I, do PLIRHINE.

Os RECURSOS, segundo O'RIORDAN (1971), "são atributos do meio ambiente apreciados pelo homem como de valor ao longo do tempo, dentro dos limites definidos pelas restrições institucionais, sociais, políticas e econômicas".

As POTENCIALIDADES representam a quantificação dos recursos hídricos sem a intervenção humana, em seu estado natural. Depende, portanto, de características geológicas, geográficas, climáticas e fisiográficas. O potencial de uma bacia é constituído pela soma dos escoamentos de superfície e de base

As DISPONIBILIDADES representam a parcela das potencialidades ativadas pela ação do homem, por meio de barragens, poços, etc., para adequar as ofertas às necessidades ou demandas.

Os conceitos de potencialidade e disponibilidade estão intimamente relacionados aos recursos renováveis anualmente, segundo a imagem do ciclo hidrológico.

Para os estudos de águas subterrâneas é necessário conceituar também o que se entende por reservas.

As RESERVAS, são em geral, reservatórios subterrâneos, de grandes dimensões, que contêm volume de água acumulado durante tempo que remonta às origens geológicas das suas formações.

As disponibilidades de água subterrânea têm o potencial como limite,

podendo ser acrescidas das reservas, se um condicionamento sócio-econômico, inerente às demandas, assim o exigir.

2.1- Potencialidades dos recursos hídricos

Dentre os indicadores mais importantes dos Recursos Hídricos destaca-se a potencialidade. Informa, de imediato, o grau de ocorrência do recurso e sua alocação geográfica.

As potencialidades são representadas pelo escoamento médio passível de ocorrer, sem interferência humana, em qualquer parte da região em estudo.

As potencialidades das unidades de planejamento, foram extraídas dos relatórios de recursos hídricos do PLIRHINE, abrangendo os escoamentos de superfície e subterrâneo. Essas duas partes, consideradas de forma inseparável, oferecem, em conjunto, todos os elementos essenciais à caracterização dos recursos hídricos do Nordeste.

Na quantificação das potencialidades hidrogeológicas dos sistemas aqüíferos sedimentares, o PLIRHINE admitiu que o escoamento médio no trimestre mais seco (onde a contribuição de precipitações à época é praticamente nula) corresponde à contribuição subterrânea anual ao escoamento total.

Na TABELA 2.1 indicam-se as potencialidades dos recursos hídricos das unidades de planejamento.

Segundo o PLIRHINE, do total de chuva caída na Região, apenas 12,0% escoa, sendo 8,6% por escoamento superficial e 3,4% por escoamento subterrâneo.

Com base nestes dados, será apresentada, a seguir, uma avaliação preliminar das principais parcelas do ciclo hidrológico do Nordeste.

Na área do Nordeste da SUDENE (incluí a região do norte de Minas Gerais), que corresponde uma área de 1.663.200 km2, a precipitação média anual é de 1.140 mm, ou 1.730 bilhões de m3/ano. Deste volume médio anual de água:

- 1.523 bilhões de m3 (88,0%) se evaporam ou evapotranspiram;
- 149 bilhões de m3 (8,6%) se escoam como água de superfície;
- 58 bilhões de m3 (3,4%) se infiltram nos aqüíferos para se transformarem em escoamento subterrâneo.

TABELA 2.1 - POTENCIALIDADES DOS RECURSOS HÍDRICOS DAS UNIDADES DE PLANEJAMENTO

UP DENOMINAÇÃO	ÁREA (KM2)	POTENCIALIDADE (EM HM3/ANO)		
		ESCOAMENTO	ESCOAMENTO	TOTAL
		SUPERFICIAL	SUBTERRÂNEO	
01 TOCANTINS MARANHENSE	32.900	5.450	500	5.950
02 GURUPÍ	50.600 *	15.290	2.510	17.800
03 MEARIM-GRAJAÚ-PINDARÉ	97.000	14.140	3.430	17.570
04 ITAPECURU	54.000	7.750	1.550	9.300
05 MUNIM-BARREIRINHAS	27.700	5.690	3.120	8.810
06 PARNAÍBA	330.000	31.090	9.030	40.120
07 ACARAÚ-COREAÚ	30.500	3.910	1.360	5.270
08 CURU	11.500	2.010	350	2.360
09 FORTALEZA	14.700	1.740	530	2.270
10 JAGUARIBE	72.000	3.340	810	4.150
11 APODI-MOSSORÓ	15.900	520	300	820
12 PIRANHAS-AÇU	44.100	2.130	590	2.720
13 LESTE POTIGUAR	24.440	950	730	1.680
14 ORIENTAL DA PARAÍBA	23.760	1.290	900	2.190
15 ORIENTAL PERNAMBUCO	25.300	3.380	950	4.330
16 BACIAS ALAGOANAS	17.100	1.430	1.650	3.080
17 SÃO FRANCISCO	487.000 *	24.400	16.700	41.100
18 VAZA-BARRIS	22.330	810	390	1.200
19 ITAPICURU-REAL	46.100	1.200	880	2.080
20 PARAGUAÇU-SALVADOR	81.560	4.215	4.205	8.420
21 CONTAS-JEQUIÉ	62.240	4.860	700	5.560
22 PARDO-CACHOEIRA	42.000	5.920	1.240	7.160
23 JEQUITINHONHA	23.200 *	5.570	540	6.250
24 EXTREMO SUL DA BAHIA	27.300	1.540	5.440	6.980
TOTAL	1.663.200	0 149.000	58.000	207.000

FONTE: SUDENE - PLANO DE APROVEITAMENTO INTEGRADO DOS RECURSOS HÍDRICOS DO NORDESTE DO BRASIL - PLIRHINE, 1980. NOTA: (*) - ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE.

2.2 - Disponibilidade dos recursos hídricos

Como as precipitações e, por consequência, os escoamentos apresentam variações no espaço e no tempo, o potencial hídrico não está sempre adaptado às demandas. O desenvolvimento dos recursos hídricos por meio de obras hidráulicas (barragens, diques, canais, pocos, etc.) consiste em adequar as ofertas às demandas.

Os reservatórios, na região semi-árida Nordestina constituem o principal equipamento de transformação, adaptação, das potencialidades em seu estado natural às demandas.

O PLIRHINE classificou os reservatórios de acordo com sua capacidade em: grandes, com capacidade de acumulação superior a 10 milhões de m3; médios, com capacidade de acumulação entre 3 e 10 milhões de m3; pequenos, com capacidade de acumulação inferior a 3 milhões de m3.

Considerou-se como disponibilidade hídrica de um reservatório aquele volume d'água que é efetivamente utilizável com determinado nível de garantia. A correspondência com a garantia é fundamental, visto que não há sentido em se estabelecer um volume sem imputar-lhe a freqüência em que estará disponível.

O nível de rendimento de um reservatório é definido como a relação entre o volume regularizável anual (a determinada fregüência) e a capacidade de acumulação do reservatório, e depende de uma série de fatores, fundamentalmente com respeito a (CEARA, 1992):

- dimensionamento hidrológico do reservatório, que traduz a razão entre sua capacidade e o volume anual médio afluente;
- maior ou menor nível de variabilidade do regime de escoamento, sendo que a vazão regularizável (mantidos constantes os demais parâmetros) tende a aumentar significativamente para os regimes mais regulares;
- forma da bacia de acumulação, que influi decisivamente nas perdas hídricas por evaporação.

O nível de garantia mais utilizado no planejamento dos recursos hídricos é o de 90%. Para este nível de garantia, para açudes bem dimensionados e nas condições normais da região semi-árida, o nível de rendimento de um reservatório é de 20 a 30%.

No presente estudo, para efeito de avaliação, considerou-se que o volume disponível anual dos reservatórios situados em rios intermitentes, para uma garantia de 90%, corresponderia, em média, a um nível de rendimento de 25%.

Assim, o volume disponível anual para as unidades de planejamento formadas por bacias de rios intermitentes, corresponde a 25% da capacidade total de acumulação de água de seus reservatórios.

Para transformar o potencial de águas subterrâneas em disponibilidades, uma alternativa, é não explorar (por poços) os escoamentos de base, deixando-os ir aos rios e regularizar a totalidade do escoamento destes por meio de reservatórios. Esta alternativa não aproveita o potencial subterrâneo "in situ" deixando-o sair aos rios, desprezando, como bem colocou o PLIRHINE, as valiosas características deste potencial, que são: abrangência espacial, perdas mínimas por evaporação direta, flexibilidade no desenvolvimento permitindo o fracionamento dos investimentos e, frequentemente, a boa qualidade de suas águas.

Some-se a isto o fato de que os aquíferos costeiros, são drenados pelos rios costeiros, geralmente difíceis de serem regularizados, por falta de condições topográficas para construção de barragens, teriam que ser, necessariamente, explorados através de poços.

No presente estudo, para efeito de avaliação, considerou-se uma descarga mínima para cada unidade de planejamento de rios perenes da região, que corresponde ao volume disponível anual mínimo das unidades de planejamento.

As potencialidades representam um limite, praticamente inatingível, de transformação em disponibilidades. Os fatores limitantes desta transformação são tanto econômicos como técnicos. O PLIRHINE considerou como sendo de 80% da potencialidade, o limite máximo factível para as disponibilidades.

2.2.1- Disponibilidade atual

A capacidade total de acumulação de água, foi obtida acrescentandose às informações, fornecidas pelo PLIRHINE, para o ano de 1980, as informações disponíveis sobre os reservatórios construídos a partir de 1980, obtidas nos órgãos públicos federais e estaduais.

Como foram identificadas algumas inconsistências nos dados do PLIRHINE relativos à capacidade de acumulação de alguns reservatórios, foi realizada uma revisão destes dados.

Na TABELA 2.2, a seguir, estão mostrados, por unidade de planejamento, a capacidade total de acumulação de água dos reservatórios existentes. Os dados apresentados respondem à exigência de se ter para o Nordeste a avaliação da capacidade de acumulação, segundo as unidades de planeja-

TABELA 2.2 - CAPACIDADE TOTAL DE ACUMULAÇÃO DE ÁGUA DOS RESERVATÓRIOS EXISTENTES, POR UNIDADE DE PLANEJAMENTO

F	N/	Н	N/	13
	IVI		IΙV	١.

UP DENOMINAÇÃO	CAPACIDADE
01 TOCANTINS MARANHENSE	0,790
02 GURUPÍ (*)	0,260
03 MEARIM-GRAJAÚ-PINDARÉ	10,260
04 ITAPECURU	2,440
05 MUNIM-BARREIRINHAS	1,570
06 PARNAÍBA	6.779,068
07 ACARAÚ-COREAÚ	1.825,682
08 CURU	1.196,531
09 FORTALEZA	850,245
10 JAGUARIBE	7.054,173
11 APODI-MOSSORÓ	657,597
12 PIRANHAS-AÇU	6.102,101
13 LESTE POTIGUAR	458,256
14 ORIENTAL DA PARAÍBA	1.047,595
15 ORIENTAL DE PERNAMBUCO	603,725
16 BACIAS ALAGOANAS	31,669
17 SÃO FRANCISCO (*)	55.209,933
18 VAZA-BARRIS	302,430
19 ITAPICURU-REAL	653,766
20 PARAGUAÇU-SALVADOR	1.691,652
21 CONTAS-JEQUIÉ	617,395
22 PARDO-CACHOEIRA	28,490
23 JEQUITINHONHA (*)	1,590
24 EXTREMO SUL DA BAHIA	0,080
TOTAL	85.127,298

NOTA: (*) ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE.

mento, de todos os reservatórios, independentemente de tamanho, existentes e programados. Note-se que tal objetivo não pode ser alcançado senão aproximadamente e impõe assim reservas no uso da informação que, entretanto, pela sua significação, compensa suas limitações.

Ressalte-se, que dos 85,127 bilhões de metros cúbicos de capacidade total de acumulação, 56,009 bilhões de metros cúbicos se referem a capacidades de acumulação dos reservatório de Sobradinho (34,116 bilhões), Itaparica (11,782 bilhões), Xingo (3,800 bilhões), Moxotó (1,226 bilhão) e Boa Esperança (5,085 bilhões).

CAPACIDADE (HM3)

O DNOCS, construiu 295 açudes públicos na região semi-árida Nordestina, com capacidade total de acumulação de 16,540 bilhões de metros cúbicos. Na TABELA 2.3, estão mostradas, por Estado, a quantidade e a capacidade de acumulação dos reservatórios públicos construídos pelo Órgão.

TABELA 2.3 - AÇUDES PÚBLICOS CONSTRUÍDOS PELO DNOCS		
ESTADO	QUANTIDADE	
PIAUÍ	15	
CEARÁ	76	
RIO GRANDE DO NORTE	52	

292 8.036 3.039 **PARAÍBA** 43 2.649 **PERNAMBUCO** 36 1.319 **ALAGOAS** 23 59 **SERGIPE** 11 20 **BAHIA** 35 1.044 **MINAS GERAIS** 83 4 **TOTAL** 295 16.541

FONTE: DNOCS

TABELA 2.4 - AÇUDES CONSTRUÍDOS PELO DNOCS EM REGIME DE COOPERAÇÃO **COM PARTICULARES E PREFEITURAS**

ESTADO	QUANTIDADE	CAPACIDADE (HM3)
PIAUÍ	01	0,7
CEARÁ	463	1.139,5
RIO GRANDE DO NORTE	64	104,8
PARAÍBA	43	110,1
PERNAMBUCO	36	50,5
ALAGOAS	23	1,0
SERGIPE	11	0,8
BAHIA	35	23,7
TOTAL	676	1.431,1

FONTE: DNOCS

Os açudes públicos construídos pelo DNOCS possibilitam a perenização de 3.320 km de rios intermitentes do semi-árido Nordestino.

O DNOCS construiu, ainda, em regime de cooperação com particulares e prefeituras, 676 açudes, que podem acumular em seu conjunto, 1,431 bilhão de metros cúbicos. Na TABELA 2.4, estão mostradas, por Estado, a quantidade e a capacidade de acumulação dos reservatórios construídos em regime de cooperação.

A partir das informações sobre a acumulação, foi estimado o volume disponível anual das águas de superfície para as unidades de planejamento formadas por bacias de rios intermitentes, que corresponde, como visto, a 25% da capacidade total de acumulação de água de seus reservatórios.

Na TABELA 2.5, a seguir estão mostradas as disponibilidades atuais dos recursos hídricos superficiais das unidades de planejamento formadas por bacias de rios intermitentes.

Para as unidades de planejamento formadas por bacias de rios perenes, considerou-se como disponibilidade superficial, as descargas mínimas

TABELA 2.5 - DISPONIBILIDADE ATUAL*		
DOS RECURSOS HÍDRICOS SUPERFICIAIS		
DAS UNIDADES DE PLANEJAMENTO FORMADAS		
POR RIOS INTERMITENTES		

EM	HM3/ANO

UP	DENOMINAÇÃO	DISPONIBILIDADE
07	ACARAÚ-COREAÚ	579,690
08	CURU	369,127
09	FORTALEZA	221,899
10	JAGUARIBE	1.937,060
11	APODI-MOSSORÓ	164,399
12	PIRANHAS-AÇU	1.525,525
13	LESTE POTIGUAR	114,564
14	ORIENTAL DA PARAÍBA	261,899
15	ORIENTAL DE PERNAMBUCO	50,931
16	BACIAS ALAGOANAS	7,917
18	VAZA-BARRIS	75,608
19	ITAPICURU-REAL	163,442
TC	DTAL	5.572,061

NOTA: (*) - DESCARGA REGULARIZADA COM 90% DE GARANTIA DOS RESERVATÓRIOS DA UNIDADE DE PLANEJAMENTO

dos rios principais. Os valores da descarga mínima foram obtidos do PLIRHINE, e nem sempre coincidem com o total do escoamento subterrâneo da unidade de planejamento.

Utilizou-se como disponibilidade para a unidade de planejamento São Francisco (UP 17), a vazão regularizada de Sobradinho e para a unidade Parnaíba, a vazão regularizada de Boa Esperança.

Na TABELA 2.6 estão mostradas as disponibilidades superficiais consideradas para as unidades de planejamento formadas por rios perenes.

As disponibilidades atuais de água subterrânea das unidades de planejamento foram estimadas pelo consultor de água subterrânea do Grupo de Recursos Hídricos do Projeto Áridas e estão mostradas na TABELA 2.7.

2.2.2- Evolução da disponibilidade

O Governo Federal, por intermédio da SUDENE, elaborou recentemente o Plano de Ação Governamental no Nordeste - PAG/NORDESTE. O Plano

TABELA 2.6 - DISPONIBILIDADE SUPERFICIAL
CONSIDERADA PARA AS UNIDADES DE
PLANEJAMENTO FORMADAS POR RIOS PERENES

ΕN	1 HM3/	'ANC
----	--------	------

UP	DENOMINAÇÃO	DISPONIBILIDADE	
01	TOCANTINS MARANHENSE	500,000	
02	GURUPÍ (*)	2.510,000	
03	MEARIM-GRAJAÚ-PINDARÉ	3.430,000	
04	ITAPECURU	1.550,000	
05	MUNIM-BARREIRINHAS	1.760,000	
06	PARNAÍBA	8.087,040	
17	SÃO FRANCISCO (*)	64.385,280	
22	PARAGUAÇU-SALVADOR	1.700,000	
21	CONTAS-JEQUIÉ	700,000	
22	PARDO-CACHOEIRA	795,000	
23	JEQUITINHONHA (*)	540,000	
24	EXTREMO SUL DA BAHIA	1.400,000	
TC	DTAL	87.357,320	

NOTA: (*) ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE.

TABELA 2.7 - DISPONIBILIDADE ATUAL DE ÁGUA SUBTERRÂNEA, POR UNIDADE DE PLANEJAMENTO

TOCANTINS MARANHENSE GURUPÍ (*) MEARIM-GRAJAÚ-PINDARÉ ITAPECURU MUNIM-BARREIRINHAS PARNAÍBA CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL DA PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA JEQUITINHONHA (*)	
GURUPÍ (*) GURUPÍ (*) MEARIM-GRAJAÚ-PINDARÉ ITAPECURU MUNIM-BARREIRINHAS PARNAÍBA ACARAÚ-COREAÚ CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	75,000
MEARIM-GRAJAÚ-PINDARÉ ITAPECURU MUNIM-BARREIRINHAS PARNAÍBA ACARAÚ-COREAÚ CURU PFORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	84,000
MUNIM-BARREIRINHAS ACARAÚ-COREAÚ CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL DA PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	591,500
PARNAÍBA CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA CORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	203,000
ACARAÚ-COREAÚ CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA CORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	170,000
CURU FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR CORIENTAL DA PARAÍBA CORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	977,000
FORTALEZA JAGUARIBE APODI-MOSSORÓ PIRANHAS-AÇU LESTE POTIGUAR ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	120,400
JAGUARIBE 1 APODI-MOSSORÓ 2 PIRANHAS-AÇU 3 LESTE POTIGUAR 4 ORIENTAL DA PARAÍBA 5 ORIENTAL DE PERNAMBUCO 6 BACIAS ALAGOANAS 7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	196,600
1 APODI-MOSSORÓ 2 PIRANHAS-AÇU 3 LESTE POTIGUAR 4 ORIENTAL DA PARAÍBA 5 ORIENTAL DE PERNAMBUCO 6 BACIAS ALAGOANAS 7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	444,300
2 PIRANHAS-AÇU 3 LESTE POTIGUAR 4 ORIENTAL DA PARAÍBA 5 ORIENTAL DE PERNAMBUCO 6 BACIAS ALAGOANAS 7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	141,300
3 LESTE POTIGUAR 4 ORIENTAL DA PARAÍBA 5 ORIENTAL DE PERNAMBUCO 6 BACIAS ALAGOANAS 7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	53,000
ORIENTAL DA PARAÍBA ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	30,000
ORIENTAL DE PERNAMBUCO BACIAS ALAGOANAS SÃO FRANCISCO (*) VAZA-BARRIS ITAPICURU-REAL PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	105,300
6 BACIAS ALAGOANAS 7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	102,000
7 SÃO FRANCISCO (*) 8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	175,000
8 VAZA-BARRIS 9 ITAPICURU-REAL 10 PARAGUAÇU-SALVADOR 11 CONTAS-JEQUIÉ 12 PARDO-CACHOEIRA	232,600
9 ITAPICURU-REAL 20 PARAGUAÇU-SALVADOR 21 CONTAS-JEQUIÉ 22 PARDO-CACHOEIRA	452,600
PARAGUAÇU-SALVADOR CONTAS-JEQUIÉ PARDO-CACHOEIRA	35,200
1 CONTAS-JEQUIÉ 2 PARDO-CACHOEIRA	48,500
2 PARDO-CACHOEIRA	56,000
	33,500
3 ΙΕΟΙ ΙΙΤΙΝΗΟΝΗΔ (*)	22,000
O OLGOTTINI IONI IA ()	8,500
4 EXTREMO SUL DA BAHIA	15,000

NOTA: (*) ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE.

considerou como essencial, para o desenvolvimento do Nordeste, a execução de um programa permanente de fortalecimento da infra-estrutura hídrica regional com objetivo de aumentar a oferta de água notadamente por ocasião das secas.

Posteriormente, a SUDENE elaborou o Programa de Fortalecimento da Infra-Estrutura Hídrica do Nordeste. Dentre os objetivos específicos do Programa pode-se destacar:

a - Utilização da água já acumulada;

TABELA 2.8 - ESTIMATIVA DA CAPACIDADE TOTAL DE ACUMULAÇÃO DE ÁGUA DOS RESERVATÓRIOS, POR UNIDADE DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3

UP DENOMINAÇÃO		CAPACIDADE DE ACUMULAÇÃO		
		2000	2010	2020
01	TOCANTINS MARANHENSE	0,790	0,790	0,790
02	GURUPÍ (*)	0,260	0,260	0,260
03	MEARIM-GRAJAÚ-PINDARÉ	10,260	10,260	10,260
04	ITAPECURU	2,440	2,440	2,440
05	MUNIM-BARREIRINHAS	1,570	1,570	1,570
06	PARNAÍBA	9.312,268	10.578,868	11.845,468
07	ACARAÚ-COREAÚ	2.493,182	2.826,932	3.160,682
08	CURU	1.319,231	1.390,581	1.441,931
09	FORTALEZA	967,045	1.025,445	1.083,845
10	JAGUARIBE	12.794,973	12.794,973	12.794,973
11	APODI-MOSSORÓ	1.519,597	1.519,597	1.519,597
12	PIRANHAS-AÇU	7.735,601	7.735,601	7.735,601
13	LESTE POTIGUAR	458,256	458,256	458,256
14	ORIENTAL DA PARAÍBA	1.453,195	1.655,995	1.193,325
15	ORIENTAL DE PERNAMBUCO	898,525	1.045,925	1.193,325
16	BACIAS ALAGOANAS	31,669	31,669	31,669
17	SÃO FRANCISCO (*)	55.806,533	56.104,833	56.403,133
18	VAZA-BARRIS	302,430	302,430	302,430
19	ITAPICURU-REAL	653,766	653,766	653,766
20	PARAGUAÇU-SALVADOR	1.698,652	1.702,152	1.705,652
21	CONTAS-JEQUIÉ	705,395	749,395	793,395
22	PARDO-CACHOEIRA	28,490	28,490	28,490
23	JEQUITINHONHA (*)	1,590	1,590	1,590
24	EXTREMO SUL DA BAHIA	0,080	0,080	0,080
Т	OTAL	98.195,798	100.611,898	103.027,998

NOTA: (*) ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE.

- b Construção de novos reservatórios nos vazios hídricos de cada Estado;
- c Uso racional e integrado da água, para o desenvolvimento de atividades econômicas, a nível de pequenos e médios produtores.

O Governo Federal, com a execução do Programa, pretende criar melhores condições para a convivência do homem nordestino com as secas, um problema histórico que vem desafiando todas as administrações do País.

A relação dos principais reservatórios programados pelos diversos órgãos públicos, para os Estados Nordestinos, está apresentada nas TABELAS A.1 a A.8, do ANEXO A.

O tratamento histórico do fenômeno das secas se tem caracterizado por intervenções isoladas, descontínuas, sem ter sido concedida uma prioridade governamental para seu planejamento global, o que implica que, nem sempre, guardou correlação com os programas de desenvolvimento e que, por outro lado, não permitiu a execução de obras permanentes, em quantidade, localizações e usos adequados às necessidades da população, dos rebanhos e dos setores produtivos.

Na TABELA 2.8, a seguir, estão mostrados, por unidade de planejamento, a evolução da capacidade total de acumulação de água dos reservatórios da Região até o ano 2020. Na sua elaboração considerou-se que todos os reservatórios atualmente programados estariam construídos até o ano 2000. Considerou-se ainda, que a partir do ano 2000, a tendência é para construção de açudes de menor porte para preenchimento dos vazios hídricos existentes na Região, fazendo com que tivesse sido adotada a hipótese de que entre os anos 2000 e 2020, o crescimento da capacidade de acumulação da região seria equivalente ao atualmente programado para ser implementado nos próximos cinco anos. A exceção foram as unidades de planejamento Jaguaribe (UP 10), Apodi-Mossoró (UP 11) e Piranhas-Açu (12), para as quais não se previu a construção de novos reservatórios além dos atualmente programados.

A evolução da disponibilidade de água subterrânea das unidades de planejamento foi estimada pelo consultor de água subterrânea do Grupo de Recursos Hídricos do Projeto Áridas e estão mostradas na TABELA 2.9.

A partir das informações sobre a evolução da capacidade de acumulação, da vazão mínima dos rios perenes e da disponibilidade de água subterrânea para cada unidade de planejamento, foi estimada a respectiva disponibilidade de recursos hídricos.

Na TABELA 2.10, estão mostradas as disponibilidades estimadas dos recursos hídricos das unidades de planejamento até o ano 2020.

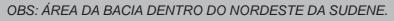


TABELA 2.9 - ESTIMATIVA EVOLUÇÃO DA DISPONIBILIDADE DE ÁGUA SUBTERRÂNEA DAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3

UP DENOMINAÇÃO		DISP	DISPONIBILIDADE		
		2000	2010	2020	
01	TOCANTINS MARANHENSE	78,750	81,110	82,730	
02	GURUPÍ (*)	88,200	90,850	92,670	
03	MEARIM-GRAJAÚ-PINDARÉ	620,550	639,160	651,940	
04	ITAPECURU	213,150	219,540	223,930	
05	MUNIM-BARREIRINHAS	178,500	183,850	187,530	
06	PARNAÍBA	1.055,160	1.107,920	1.141,150	
07	ACARAÚ-COREAÚ	132,440	143,030	151,580	
80	CURU	216,250	233,560	247,570	
09	FORTALEZA	510,940	572,250	623,700	
10	JAGUARIBE	157,920	173,710	185,860	
11	APODI-MOSSORÓ	60,950	68,260	74,340	
12	PIRANHAS-AÇU	33,600	36,960	42,760	
13	LESTE POTIGUAR	121,090	135,620	147,800	
14	ORIENTAL DA PARAÍBA	117,300	131,370	143,230	
15	ORIENTAL DE PERNAMBUCO	201,480	225,650	245,900	
16	BACIAS ALAGOANAS	267,490	299,580	326,560	
17	SÃO FRANCISCO (*)	506,910	557,600	596,630	
18	VAZA-BARRIS	38,720	41,820	44,310	
19	ITAPICURU-REAL	53,350	57,620	61,060	
20	PARAGUAÇU-SALVADOR	61,600	66,530	70,500	
21	CONTAS-JEQUIÉ	36,180	37,990	39,130	
22	PARDO-CACHOEIRA	23,760	24,950	25,700	
23	JEQUITINHONHA (*)	8,920	9,180	9,360	
24	EXTREMO SUL DA BAHIA	16,200	17,010	17,520	
Т	OTAL	4.799,410	5.155,120	5.433,460	

TABELA 2.10 - EVOLUÇÃO DA DISPONIBILIDADE DOS RECURSO HÍDRICOS, POR UNIDADE DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/ANO

UP	DENOMINAÇÃO	O DISPONIBILIDADE			
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	575,00	578,75	581,11	582,73
02	GURUPÍ (*)	2.594,00	2.598,20	2.600,85	2.602,67
03	MEARIM-GRAJAÚ-PINDARÉ	4.021,50	4.050,55	4.069,16	4.081,94
04	ITAPECURU	1.753,00	1.763,15	1.769,54	1.773,93
05	MUNIM-BARREIRINHAS	1.930,00	1.938,50	1.943,85	1.947,53
06	PARNAÍBA	9.064,04	9.142,20	9.194,96	9.228,19
07	ACARAÚ-COREAÚ	700,09	879,00	973,03	1.065,02
08	CURU	565,72	616,05	648,70	678,04
09	FORTALEZA	666,19	762,03	837,94	903,99
10	JAGUARIBE	2.078,36	3.530,18	3.545,97	3.558,12
11	APODI-MOSSORÓ	217,39	440,84	448,15	454,23
12	PIRANHAS-AÇU	1.555,52	1.967,50	1.970,86	1.976,66
13	LESTE POTIGUAR	219,86	235,65	250,18	262,36
14	ORIENTAL DA PARAÍBA	363,89	480,59	545,36	607,92
15	ORIENTAL DE PERNAMBUCO	325,93	426,11	487,13	544,23
16	BACIAS ALAGOANAS	240,51	275,40	307,49	334,47
17	SÃO FRANCISCO (*)	64.837,88	64.892,19	64.942,88	64.981,9
18	VAZA-BARRIS	110,80	114,32	117,42	119,91
19	ITAPICURU-REAL	211,94	216,79	221,06	224,50
20	PARAGUAÇU-SALVADOR	1.756,00	1.761,60	1.766,53	1.770,50
21	CONTAS-JEQUIÉ	733,50	736,18	737,99	739,13
22	PARDO-CACHOEIRA	817,00	818,76	819,95	820,70
23	JEQUITINHONHA (*)	548,50	548,92	549,18	549,36
24	EXTREMO SUL DA BAHIA	1.415,00	1.416,20	1.417,01	1.417,52
T	OTAL	97.301,68	100.189,71	100.746,35	5 101.225,

NOTA: (*) ÁREA DA BACIA DENTRO DO NORDESTE DA SUDENE

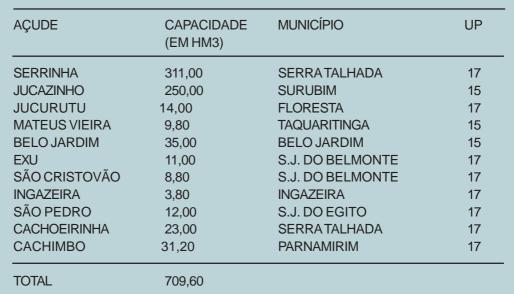


TABELA A.1 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DO PIAUÍ

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
ALGODÕES	51,00	COCAL	06
ALGODÕES II	140,00	CURIMATÁ	06
CONTRATO	280,00		06
RANGEL	780,00		06
SAMBITO	97,50	ELESBÃO VELOSO	06
SALINAS	387,00	SÃO FRANCISCO DO PIAUÍ	06
JOANA	10,60	PEDRO II	06
CAMPO ALEGRE	11,00	S.J. DO PIAUÍ	06
MELQUIADES	5,00	S.J. DO PIAUÍ	06
SALGADINHO	9,40	SIMÕES	06
JENIPAPO	185,00	S.J. DO PIAUÍ	06
PETRÓNIO PORTELA	181,00	SÃO RAIMUNDO NONATO	06
PEDRA REDONDA	216,00	CONCEIÇÃO DO CANINDÉ	06
TOTAL	2.353,50		

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

TABELA A.2 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DE PERNAMBUCO

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

TABELA A.3 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DO CEARÁ

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
CASTANHÃO	4.600,00	ALTO SANTO	10
ARNEIROZII	190,00	ARNEIROZ	10
DO PAULO	27,30	PENTECOSTE	08
MELANCIAS	28,90	SÃO LUÍS DO CURU	08
OLHO D'ÁGUA	21,30	VÁRZEAALEGRE	10
TAQUARA	282,00	MUCAMBO	07
SÃO MIGUEL	32,00	ASSARE	10
FREICHEIRINHA	85,00	FRECHEIRINHA	07
TRUSSU	263,00	IGUATU	10
SERAFIM DIAS	43,00	MOMBAÇA	10
FOGAREIRO	118,00	QUIXERÁMOBIM	10
ARACATIAÇU	60,00	AMONTADA	07
JERIMUM	19,50	ITAPAJÉ	08
TAÚNA	60,00	CHAVAL	07
ARACATIMIRIM	45,00	ITAREMA	07
SANTA MARIA	6,00	ERERÊ	10
BALDINHO	32,00	CEDRO	10
FEIJÃO	20,00	IBARETAMA/IBICUITINGA	10
RIACHO DO MEIO	16,10	QUITAÚS/MANGABEIRA	
FELIPE	50,00	TARRAFAS	10
APERTADO	10,00	SALITRE	10
ALTO POTI	30,00	QUITERIANÓPOLIS	06
DIAMANTE	33,60	ITAPORANGA	06
FLOR DO CAMPO	63,80	NOVOORIENTE	06
JUCÁ	34,00	ARNEIROZ	10
ARATUBA	4,00	ARATUBA	09
MONSENHOR TABOSA	9,00	MONSENHOR TABOSA	10
PESQUEIRO	8,20	CAPISTRANO	09
GRAÇA	15,00	GRAÇA	07
CANINDEZINHO	15,00	CROATÁ	06
ANGICOS	52,20	COREAÚ	07
MUQUÉM	36,00	CARIÚS/JUCÁS	10
CARMINA	20,00	SENADOR CATUNDA	10
SÃO PEDRO	20,00	ANTONINA DO NORTE	10
ROSÁRIO	61,50	LAVRAS DA MANGABEIRA	10
SIRIEMA	17,00	CARIDADE	08
SOUZA	30,00	CANINDÉ	08
BERÉ	10,00	JARDIM	10
CARIRIAÇU	6,00	CARIRIAÇU	10
CACHOEIRA	23,00	AURORA	10
CASTRO	54,60	ITAPIÚNA	09
BENGUE	15,00	AIUABA	10
BREJINHO	16,00	POTENGI	10
BARRA VELHA	37,30	INDEPENDÊNCIA	06
MERUOCA	5,00	MERUOCA	07
CAUÍPE		ICARAÍ	07
CAMPANÁRIO	50,00	CAMPANÁRIO/GRAÇA	09
GANGORRA	23,20	GRANJA	
	40,00		07
MAMOEIRO	100,00	SABOEIRO	10
ABAIARA	25,00	ABAIARA	10

TOTAL 9.206,50

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994.

2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

3 - PROURB, GOVERNO DO ESTADO DO CEARÁ, 1994

TABELA A.4 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DO RIO GRANDE DO NORTE

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
SANTACRUZ	612,00	APODI	11
OITICICA	1.400,00	JUCURUTU	12
UMARI	250,00	UPANEMA	11
TOTAL	2.262,00		

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

TABELA A.5 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DA PARAÍBA

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
CANOAS	48,00	NOVA OLINDA	12
POÇO REDONDO	55,00	SANTANA DE MANGUEIRA	12
BRUSCAS	39,00	CURRAL VELHO	12
VÁRZEA GRANDE	21,50	PICUI	12
PELO SINAL	20,60	CABACEIRAS	14
ALMAS	70,00	CAJAZEIRAS	12
ACAUÃ	385,00	AROEIRAS	14
TOTAL	639,10		

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

TABELA A.6 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DE ALAGOAS

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
ANEIO	1,50	CANAPI	17
CAPIAZINHO	2,80	OURO BRANCO	17
PÃO DE AÇÚCAR	0,60	PÃO DE AÇÚCAR	17
TOTAL	4,90		

FONTE: PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994.

TABELA A.7 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O ESTADO DA BAHIA

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
RIACHO DO PAULO	O 48,00	DOM BASÍLIO	21
TRUVISCO	40,00	CACULÉ	21
AYMORES	7,00	PIRITIBA	20
TOTAL	95,00		

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

TABELA A.8 - RELAÇÃO DE AÇUDES PROGRAMADOS PARA O NORTE DE MINAS GERAIS

AÇUDE	CAPACIDADE (EM HM3)	MUNICÍPIO	UP
LAGOA DO VEADO	32,00	S. J. PARAÍSO	17
IMPOSSÍVEL	0,40	ESPINOSA	17
ITAPIRIA	82,00	ESPINOSA	17
PIRANHAS	18,00	MONTE AZUL	17
GALHEIROS	15,00	ESPINOSA	17
SÃO JOÃO	3,30	ESPINOSA	17
RIBEIRÃO DO FOGO	1,00	SALINAS	17
TOURO	14,00	PORTEIRINHA	17
DIAMANTE	1,00	C. DE JESUS	17
CACHOEIRA	8,00	PORTEIRINHA	17
CATUTI	1,00	MATO VERDE	17
ICARAI	1,20	SÃO FRANCISCO	17

TOTAL 176,90

FONTES: 1 - PROGRAMA DE FORTALECIMENTO DA INFRA-ESTRUTURA HÍDRICA DO NORDESTE, SUDENE, 1994. 2 - PROGRAMA DE AÇÃO DO DNOCS, 1993.

3 - ESTUDO DAS DEMANDAS

O estudo da demanda tem como objetivo determinar, na escala anual, as demandas atuais de água para diversos usos, bem como estimar as futuras, para os anos 2000, 2010 e 2020.

Para efeito de planejamento dos recursos hídricos entende-se por demandas as quantidades de água, expressas em unidades de volume, que devem satisfazer aos diversos usos, sejam eles consuntivos ou não.

Uso da água se refere às maneiras pelas quais pode ser ela utilizada pelo homem. Os usos da água incluem: dessedentação, cozimento de alimentos, irrigação, aquecimento e processamento industrial, refrigeração, diluição de efluentes, geração de energia, navegação, pesca, paisagismo e outras atividades ou processos.

3.1 - Abastecimento humano

Com o propósito de se estimar as demandas de água para a população consideraram-se duas grandes categorias:

- demanda para abastecimento urbano;
- demanda humana rural difusa.

Os dados básicos utilizados para realização do estudo foram os dados censitários do IBGE, por município, até 1991 e os coeficientes de demandas obtidos do PLIRHINE.

Os dados do Censo de 1991 indicaram que a população do Nordeste da SUDENE era de 43.834.483 habitantes.

A TABELA 3.1 mostra a população total, urbana e rural dos Estados Nordestinos, obtidas do referido Censo.

A região semi-árida Nordestina abrange áreas pertencentes a 9 Estados, incluindo o norte de Minas Gerais e excluindo o Maranhão. A população total residente na região semi-árida era de 26.336.297 habitantes, em 1991, sendo, o Ceará e a Bahia, os Estados com maior número de habitantes residentes nessa região.

A TABELA 3.2, mostra a população total, urbana e rural dos residentes na região semi-árida Nordestina.

A população urbana residente na região semi-árida, em 1991, era de 14.924.334 habitantes, tendo apresentado uma taxa de crescimento anual

TABELA 3.1 - POPULAÇÃO TOTAL, URBANA E RURAL DOS ESTADOS NORDESTINOS EM 1991

ESTADO	TOTAL	URBANA	RURAL
MARANHÃO	4.929.016	1.972.009	2.957.008
PIAUÍ	2.582.137	1.367.184	1.214.953
CEARÁ	6.366.641	4.162.007	2.204.634
RIO GRANDE DO NORTE	2.415.562	1.669.267	746.295
PARAÍBA	3.201.108	2.052.066	1.149.042
PERNAMBUCO	7.126.166	5.049.968	2.076.198
ALAGOAS	2.514.097	1.482.033	1.032.064
SERGIPE	1.491.875	1.002.877	488.998
BAHIA	11.867.969	7.016.769	4.851.199
MINAS GERAIS (*)	1.339.912	736.830	603.082
TOTAL	43.834.483	26.511.010	17.323.473

FONTE: IBGE - CENSO DEMOGRÁFICO DE 1991. NOTA: (*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE.

TABELA 3.2 - POPULAÇÃO TOTAL, URBANA E RURAL RESIDENTE NA REGIÃO SEMI-ÁRIDA NORDESTINA EM 1991

ESTADO	TOTAL	URBANA	RURAL
PIAUÍ	2.535.024	1.352.454	1.182.570
CEARÁ	6.321.142	4.145.384	2.175.758
RIO GRANDE DO NORTE	2.368.200	1.658.873	709.327
PARAÍBA	3.133.250	2.029.419	1.103.831
PERNAMBUCO	3.449.084	1.810.560	1.638.524
ALAGOAS	926.352	420.257	506.095
SERGIPE	497.561	228.269	269.292
BAHIA	5.765.770	2.542.288	3.223.482
MINAS GERAIS (*)	1.339.914	736.830	603.084
TOTAL	26.336.297	14.924.334	11.411.963

FONTE: IBGE - CENSO DEMOGRÁFICO DE 1991. NOTA: (*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE.

35

elevada, na última década (4,01% ao ano), sendo superior inclusive à taxa de crescimento anual, no período, da população urbana do Nordeste, que foi de 3,53% ao ano.

A taxa de urbanização da região semi-árida foi de 56,67% em 1991. A tendência a médio e longo prazos é a do crescimento absoluto e relativo da influência das cidades na economia regional.

A crescente urbanização da região semi-árida corrobora para o aumento da concentração espacial dos habitantes. Esse fato, se por um lado facilita a adoção de políticas governamentais visando garantir o abastecimento de água para estas populações, por outro, provoca um aumento na demanda de água já que acarreta, também, uma mudança de costumes em relação ao uso d'água.

Entretanto, o aumento da população, atendida por sistemas de abastecimento de água, apresenta vantagens incontestes para a saúde e para o bem-estar das populações beneficiadas devido, sobretudo, à diminuição das doenças de veiculação hídrica.

O crescimento das cidades irá, certamente, demandar mais esforço na aplicação de recursos em infra-estrutura e serviços básicos, reconhecidamente deficientes na maioria das cidades nordestinas.

As populações urbana, rural e total, das unidades de planejamento, foram obtidas agregando-se os dados de população dos municípios componentes destas unidades.

A TABELA 3.3, mostra a população total, urbana e rural dos residente nas unidades de planejamento.

3.1.1 - Projeção populacional de 10 em 10 anos até o ano 2020

No presente estudo, as projeções populacionais para as populações totais dos Estados, foram elaboradas pelo Grupo de Recursos Humanos do Projeto Aridas. Como não foram fornecidas as projeções das populações urbanas e rurais, foi necessário a elaboração das projeções para as mesmas. As projeções das populações urbanas foram obtidas por diferença entre as populações totais e rurais.

Para a elaboração das Projeções populacionais das populações rurais até o ano 2020, adotou-se uma função exponencial de crescimento geométrico de média anual do tipo:

$$1/n$$

i = (Pn/Po) - 1 ou Pn = Po (1 + i)

TABELA 3.3 - POPULAÇÃO URBANA, RURAL E TOTAL RESIDENTE NAS UNIDADES DE PLANEJAMENTO EM 1991

UP	UNIDADE DE PLANEJAMENTO		POPULAÇÃO	
		TOTAL	URBANA	RURAL
01	TOCANTINS MARANHENSE	449.374	264.818	184.556
02	GURUPÍ (*)	578.784	192.304	386.480
03	MEARIM-GRAJAÚ-PINDARÉ	2.321.572	842.469	1.479.103
04	ITAPECURU	771.619	326.331	445.288
05	MUNIM-BARREIRINHAS	415.757	121.818	293.939
06	PARNAÍBA	3.359.466	1.741.595	1.617.872
07	ACARAÚ-COREAÚ	900.418	426.746	473.672
80	CURU	385.162	192.629	192.533
09	FORTALEZA	2.674.090	2.409.979	264.111
10	JAGUARIBE	2.021.552	982.511	1.039.041
21	APODI-MOSSORÓ	538.053	361.263	176.790
12	PIRANHAS-AÇU	1.245.411	684.734	560.677
13	LESTE POTIGUAR	1.693.082	1.147.096	545.986
14	ORIENTAL DA PARAÍBA	2.140.124	1.528.240	611.884
15	ORIENTAL DE PERNAMBUCO	5.273.638	4.161.890	1.111.748
16	BACIAS ALAGOANAS	1.961.477	1.253.953	707.524
17	SÃO FRANCISCO (*)	6.438.117	3.184.912	3.253.205
18	VAZA-BARRIS	1.019.247	755.592	263.655
19	ITAPICURU-REAL	1.409.143	517.118	892.025
20	PARAGUAÇU-SALVADOR	4.714.186	3.408.425	1.233.761
21	CONTAS-JEQUIÉ	1.407.999	612.371	795.628
22	PARDO-CACHOEIRA	1.396.107	909.008	487.099
22	JEQUITINHONHA (*)	224.185	107.415	116.769
24	EXTREMO SUL DA BAHIA	495.920	305.793	190.127
Т	OTAL	43.834.483	26.511.010	17.323.473

FONTE: IBGE - CENSO DEMOGRÁFICO DE 1991.

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

Portanto, para a realização dessas projeções nada mais se fez do que utilizar uma metodologia universalmente aceita.

Nas TABELAS 3.4 a 3.6, a seguir, estão mostradas as projeções para as populações urbanas, rurais e totais dos Estados nordestinos, previstas para os anos 2000, 2010 e 2020.

As TABELA 3.7 e 3.9, mostram as projeções das populações urbana, rural e total dos residentes nas unidades de planejamento, previstas para os anos 2000, 2010 e 2020.

TABELA 3.4 - PROJEÇÃO DA POPULAÇÃO URBANA RESIDENTE NOS ESTADOS NORDESTINOS ATÉ O ANO 2020

EM 1.000 HABITANTES

ESTADO	F	POPULAÇÃO URBANA	
	2000	2010	2020
MARANHÃO	2.465	2.877	3.194
PIAUÍ	1.930	2.291	2.583
CEARÁ	5.387	6.448	7.404
RIO GRANDE DO NORTE	2.136	2.550	2.859
PARAÍBA	2.698	3.246	3.720
PERNAMBUCO	6.476	7.652	8.612
ALAGOAS	2.017	2.337	2.573
SERGIPE	1.400	1.650	1.837
BAHIA	9.597	11.400	12.687
MINAS GERAIS (*)	1.050	1.280	1.450
NORDESTE	35.158	41.731	46.920
NOTA: (*) - REGIÃO DO NORTE DE I	MINAS, INCLUÍDA NO NORI	DESTE DA SUDENE	

TABELA 3.5 - PROJEÇÃO DA POPULAÇÃO RURAL RESIDENTE NOS ESTADOS NORDESTINOS ATÉ O ANO 2020

EM 1.000 HABITANTES

	POPULAÇÃO RURAL				
	2000	2010	2020		
MARANHÃO	3.145	3.369	3.608		
PIAUÍ	1.194	1.171	1.149		
CEARÁ	2.004	1.802	1.621		
RIO GRANDE DO NORTE	717	686	657		
PARAÍBA	1.025	903	795		
PERNAMBUCO	1.870	1.665	1.482		
ALAGOAS	1.054	1.079	1.104		
SERGIPE	464	437	412		
BAHIA	4.898	4.951	5.005		
MINAS GERAIS (*)	585	565	546		

TABELA 3.6 - PROJEÇÃO DA POPULAÇÃO TOTALRESIDENTE NOS ESTADOS NORDESTINOS ATÉ O ANO 2020

EM 1.000 HABITANTES

ESTADO	POPULAÇÃO TOTAL			
	2000	2010	2020	
MARANHÃO	5.610	6.246	6.802	
PIAUÍ	3.124	3.462	3.732	
CEARÁ	7.392	8.250	9.025	
RIO GRANDE DO NORTE	2.853	3.236	3.516	
PARAÍBA	3.723	4.149	4.515	
PERNAMBUCO	8.346	9.317	10.094	
ALAGOAS	3.071	3.416	3.678	
SERGIPE	1.864	2.087	2.249	
BAHIA	14.495	16.351	17.692	
MINAS GERAIS (*)	1.635	1.845	1.996	
NORDESTE	52.114	58.359	63.299	

TABELA 3.7 - PROJEÇÃO DA POPULAÇÃO URBANA RESIDENTE NAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM 1.000 HABITANTES

UP	UNIDADE DE PLANEJAMENTO	POPUL	POPULAÇÃO URBANA	
		2000	2010	2020
01	TOCANTINS MARANHENSE	315	359	395
02	GURUPÍ (*)	248	293	327
03	MEARIM-GRAJAÚ-PINDARÉ	1.069	1.257	1.399
04	ITAPECURU	405	470	522
05	MUNIM-BARREIRINHAS	160	192	215
06	PARNAÍBA	2.431	2.903	3.292
07	ACARAÚ-COREAÚ	615	780	928
80	CURU	272	342	404
09	FORTALEZA	2.865	3.249	3.597
10	JAGUARIBE	1.403	1.770	2.102
11	APODI-MOSSORÓ	466	558	628
12	PIRANHAS-AÇU	945	1.171	1.359
13	LESTE POTIGUAR	1.480	1.774	1.998
14	ORIENTAL DA PARAÍBA	1.943	2.293	2.595
15	ORIENTAL DE PERNAMBUCO	5.175	6.004	6.676
16	BACIAS ALAGOANAS	1.676	1.948	2.154
17	SÃO FRANCISCO (*)	4.614	5.646	6.421
18	VAZA-BARRIS	1.014	1.175	1.295
19	ITAPICURU-REAL	844	1.066	1.227
20	PARAGUAÇU-SALVADOR	4.512	5.236	5.755
21	CONTAS-JEQUIÉ	916	1.128	1.278
22	PARDO-CACHOEIRA	1.147	1.431	1.586
23	JEQUITINHONHA (*)	159	196	224
24	EXTREMO SUL DA BAHIA	414	489	543
т	OTAL	35.158	41.731	46.920

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

TABELA 3.8 - PROJEÇÃO DA POPULAÇÃO RURAL RESIDENTE NAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM 1.000 HABITANTES

UP	UNIDADE DE PLANEJAMENTO		POPULAÇÃO RURAL	
		2000	2010	2020
01	TOCANTINS MARANHENSE	196	210	225
02	GURUPÍ (*)	411	440	472
03	MEARIM-GRAJAÚ-PINDARÉ	1.573	1.685	1.805
04	ITAPECURU	474	507	543
05	MUNIM-BARREIRINHAS	313	335	359
06	PARNAÍBA	1.586	1.554	1.527
07	ACARAÚ-COREAÚ	431	387	348
08	CURU	175	157	142
09	FORTALEZA	240	216	194
10	JAGUARIBE	944	849	764
11	APODI-MOSSORÓ	170	163	156
12	PIRANHAS-AÇU	510	460	415
13	LESTE POTIGUAR	516	486	458
14	ORIENTAL DA PARAÍBA	546	481	423
15	ORIENTAL DE PERNAMBUCO	1.001	892	794
16	BACIAS ALAGOANAS	703	700	699
17	SÃO FRANCISCO (*)	3.178	3.105	3.041
18	VAZA-BARRIS	256	247	240
19	ITAPICURU-REAL	888	884	881
20	PARAGUAÇU-SALVADOR	1.246	1.259	1.273
21	CONTAS-JEQUIÉ	803	812	820
22	PARDO-CACHOEIRA	489	492	495
23	JEQUITINHONHA (*)	115	112	110
24	EXTREMO SUL DA BAHIA	192	194	196
	TOTAL	16.956	16.628	16.379

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

TABELA 3.9 - PROJEÇÃO DA POPULAÇÃO TOTAL RESIDENTE NAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM 1.000 HABITANTES

UP	UNIDADE DE PLANEJAMENTO	POF	PULAÇÃO TO	TAL
-	_	2000	2010	2020
01	TOCANTINS MARANHENSE	511	596	620
02	GURUPÍ (*)	659	733	799
03	MEARIM-GRAJAÚ-PINDARÉ	2.642	2.942	3.204
04	ITAPECURU	878	978	1.065
05	MUNIM-BARREIRINHAS	473	527	574
06	PARNAÍBA	4.017	4.458	4.819
07	ACARAÚ-COREAÚ	1.045	1.167	1.276
08	CURU	447	499	546
09	FORTALEZA	3.105	3.465	3.791
10	JAGUARIBE	2.347	2.620	2.866
11	APODI-MOSSORÓ	636	721	783
12	PIRANHAS-AÇU	1.455	1.631	1.774
13	LESTE POTIGUAR	1.996	2.259	2.455
14	ORIENTAL DA PARAÍBA	2.489	2.774	3.018
15	ORIENTAL DE PERNAMBUCO	6.177	6.895	7.470
16	BACIAS ALAGOANAS	2.379	2.647	2.853
17	SÃO FRANCISCO (*)	7.792	8.750	9.462
18	VAZA-BARRIS	1.270	1.423	1.535
19	ITAPICURU-REAL	1.732	1.950	2.107
20	PARAGUAÇU-SALVADOR	5.758	6.495	7.028
21	CONTAS-JEQUIÉ	1.720	1.940	2.099
22	PARDO-CACHOEIRA	1.705	1.923	2.081
23	JEQUITINHONHA (*)	274	309	334
24	EXTREMO SUL DA BAHIA	606	683	739
	TOTAL	52.114	58.359	63.299

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE

3.1.2- Abastecimento de água de áreas urbanas

Por demanda de água para abastecimento urbano, se entende as necessidades de abastecimento dos habitantes urbanos.

Nas cidades e distritos situados na região semi-árida, para se dar uma sustentabilidade ao desenvolvimento, não basta apenas que sejam implantados sistemas de abastecimento de água. É preciso, antes de tudo, se ter certeza de que as fontes de água desses sistemas ofereçam a garantia suficiente para o atendimento nos períodos de seca que, costumeira e ciclicamente, acontecem.

Na verdade, este é um cruciante problema, que enfrentam as cidades e distritos. Como exemplo da vulnerabilidade dos sistemas de abastecimento de água em operação na região, durante a seca de 1993, até mesmo as grandes capitais do Nordeste, como Recife e Fortaleza, enfrentaram sérios problemas, o que implicou na necessidade de praticarem-se racionamentos na distribuição de água para uso das populações ali residentes.

Ressalte-se, que os Estados do Ceará, Rio Grande do Norte e Paraíba, não são banhados por rios perenes, o que dificulta sobremaneira o abastecimento de água de suas populações, que ficam a depender, primordialmente, das águas acumuladas em açudes e, secundariamente, das exíguas reservas de água subterrânea existentes.

3.1.2.1- Situação atual do abastecimento urbano dos Estados Nordestinos

Com base nas informações extraídas do Catálogo Brasileiro de Engenharia Sanitária e Ambiental - CADES, elaborado pela Associação Brasileira de Engenharia Sanitária e Ambiental - ABES, para o ano de 1991, foi realizado um diagnóstico da situação atual do abastecimento urbano dos Estados Nordestinos.

A área total da Região Nordeste é de 1.556.000 km2 Segundo dados do Censo realizado em 1991, abrigava uma população de 42.496.316 habitantes distribuídos em 1.547 Municípios.

A população urbana do Nordeste correspondia a 60,65% da população total da Região.

Segundo o CADES, até 1991, tinham sido implantados 1.424 sistemas de abastecimento de água em sedes municipais e 1.125 sistemas em distri-

tos, num total de 2.549 sistemas. Do total, as empresas estaduais de saneamento eram responsáveis pela operação de 1.708 sistemas, sendo que, 1.231 eram em sedes municipais e 477 em distritos. Em 1991, 123 sedes municipais na Região não contavam com sistema de abastecimento de água, o que corresponde a um índice de atendimento de 92,05% para as sedes municipais.

A população urbana total abastecida, em 1991, era de 20.376.773 habitantes, correspondendo a 79,05% da população urbana da Região. O Ceará é o Estado que apresenta o mais baixo percentual de atendimento, com apenas 59,55% da sua população urbana sendo atendida com sistema de abastecimento de água. Já o Estado do Piauí é o que apresentou o melhor desempenho, com 92,82% de sua população urbana sendo atendida por sistema de abastecimento de água.

Na TABELA 3.10 a seguir, está mostrada a situação, por Estado, do atendimento da população urbana, por sistema de abastecimento de água.

O volume de água médio produzido pelas empresas estaduais de saneamento da Região foi de 222 l/hab/dia. A do Ceará foi a empresa que apresentou o mais baixo "per capita" e as dos Estados do Maranhão e Sergipe, os mais elevados.

Quanto ao índice de faturamento, que é a relação entre o volume de água faturado e o volume de água produzido, o percentual médio foi de 50,24%, tendo a empresa do Maranhão apresentado o pior desempenho, somente faturando 39,43% de sua água produzida. A empresa do Ceará foi a que apresentou o melhor desempenho, faturando 71,67% de sua água produzida.

Na TABELA 3.11 adiante, está mostrada alguns dados técnicos operacionais das companhias estaduais de saneamento.

A seguir, é mostrada a situação atual do abastecimento urbano de água nos Estados da Região.

a) Maranhão

O Estado do Maranhão possui uma área de 329.556 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 4.929.029 habitantes distribuídos em 136 Municípios.

A população urbana do Maranhão correspondia a 40,01% da população total do Estado.

As principais cidades do Estado são São Luís, a capital, com 695.000 habitantes; Imperatriz com 276.440 habitantes; e Caxias com 146.730 habitantes.

TABELA 3.10 - POPULAÇÃO URBANA NORDESTINA ATENDIDA COM SISTEMA DE ABASTECIMENTO DE ÁGUA EM 1991

ESTADO	SEDES MUNICIPAIS ATENDIDAS (EM %)	POPULAÇÃO URBANA ATENDIDAS (EM %)			
	ATENDIDAS (EIVI 70)	TOTAL	CAPITAL	INTERIOR	
MARANHÃO	100,00	84,40	79,86	59,68	
PIAUÍ	85,14	92,82	100,00	100,00	
CEARÁ	78,80	59,55	79,31	43,05	
RIO G. DO NORTE	88,82	84,74	91,10	78,59	
PARAÍBA	90,64	97,28	91,38	98,11	
PERNAMBUCO	99,40	92,23	91,31	91,13	
ALAGOAS	100,00	75,52	81,44	68,50	
SERGIPE	100,00	88,45	79,30	99,18	
BAHIA	93,25	72,60	94,64	65,55	
NORDESTE	92,05 79,05	87,99	76,24		

Fonte: Catálogo Brasileiro de Engenharia Sanitária e Ambiental -CADES, elaborado pela Associação Brasileira de Engenharia Sanitária e Ambiental - ABES.

TABELA 3.11 - DADOS TÉCNICOS OPERACIONAIS DAS COMPANHIAS ESTADUAIS DE SANEAMENTO

ESTADO	ÍNDICE DE	VOLUME PRODUZIDO (EM I/hab/dia)			
	FATURAMENTO (EM %)	TOTAL	CAPITAL	INTERIOR	
MARANHÃO	39,43	273	450	271	
PIAUÍ	57,31	199	197	212	
CEARÁ	71,67	164	186	226	
RIO G. DO NORTE	59,10	237	313	221	
PARAÍBA	53,09	244	333	229	
PERNAMBUCO	53,25	225	409	170	
ALAGOAS	67,54	171	274	132	
SERGIPE	61,98	273	497	174	
BAHIA	50,21	229	340	208	
NORDESTE	50,24	222	317	200	

Fonte: Catálogo Brasileiro de Engenharia Sanitária e Ambiental -CADES, elaborado pela Associação Brasileira de Engenharia Sanitária e Ambiental - ABES.

O Maranhão tem como principais rios o Tocantins, Gurupi, Pindaré, Mearim, Parnaíba, Turiaçu e Itapecuru, que são mananciais utilizados para o abastecimento de água à população do Estado.

O Estado do Maranhão não possui área na zona semi-árida Nordestina.

Segundo a Companhia de Águas e Esgotos do Maranhão - CAEMA, até 1991, tinham sido implantados 136 sistemas de abastecimento de água em sedes municipais e 65 sistemas em distritos, num total de 201 sistemas, dos quais, 113 em sedes municipais e 43 em distritos estão sob a responsabilidade da CAEMA. Em 1991, não existia nenhuma sede municipal sem sistema de abastecimento de água, ou seja, um índice de atendimento de 100% para as sedes municipais.

A população urbana total abastecida em 1991, era de 1.664.316 habitantes, correspondendo a 70,81% da população urbana do Maranhão.

A população urbana total atendida pela CAEMA era de 1.307.000 habitantes em 1991, sendo 555.000 em São Luís e 752.000 no Interior. A população urbana total das cidades operadas pela CAEMA era de 1.955.000 habitantes, sendo 695.000 na Capital e 1.260.000 no interior. A relação população atendida/população urbana da cidade é de 79,86% para São Luís e de 59,68% para as demais cidades atendidas pela CAEMA.

O volume de água produzido em 1991 pela CAEMA foi de 454.000 m3/dia, sendo que 250.000 m3/dia se destinaram ao abastecimento de São Luís e 204.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 347 l/hab/dia, sendo 450 l/hab/dia para São Luís e 271 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido foi de 39,43% em 1991.

b) Piauí

O Estado do Piauí possui uma área total de 251.273 km2. Segundo dados do Censo Realizado em 1991, abrigava uma população de 2.582.137 habitantes distribuídos em 148 municípios.

A população urbana do Piauí correspondia a 52,95% da população total do Estado.

As principais cidades do Estado são Teresina, a capital, com 598.411 habitantes; Parnaíba com 127.986 habitantes; Picos com 78.425 habitantes; e Floriano com 51.512 habitantes.

O Piauí tem como principais rios o Parnaíba, Poty, Canindé, São Nicolau e Gurguéia.

Em 1991, 98,92% da população urbana vivia na área semi-árido do Estado.

Segundo a Água e Esgotos do Piauí S/A - AGESPISA, até 1991, tinham sido implantados 126 sistemas de abastecimento de água em sedes municipais e 17 sistemas em distritos, num total de 143 sistemas. Do total, a AGESPISA era responsável pela operação de 142 sistemas, sendo que, 125 eram em sedes municipais e 17 em distritos. Havia somente uma prefeitura municipal operando o sistema de abastecimento de sua sede. Em 1991, 22 sedes municipais no Estado não contavam com sistema de abastecimento de água, o que corresponde a um índice de atendimento de 85,14% para as sedes municipais.

A população urbana total abastecida em 1991, era de 1.268.989 habitantes, correspondendo a 92,88% da população urbana do Piauí.

A população urbana atendida pela AGESPISA era de 1.238.000 habitantes em 1991, sendo 624.000 em Teresina e 614.000 no Interior. A população urbana total das cidades operadas pela AGESPISA era de 1.238.000 habitantes, sendo 624.000 na capital e 614.000 no interior. A relação população atendida/população urbana da cidade tanto é de 100,00% para Teresina como para as demais cidades atendidas pela AGESPISA.

O volume de água produzido em 1991 pela AGESPISA foi de 253.000 m3/dia, sendo que 123.000 m3/dia se destinaram ao abastecimento de Teresina e 130.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 204 l/hab/dia, sendo 197 l/hab/dia para Teresina e 212 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido foi de 57,31% em 1991.

c) Ceará

O Estado do Ceará possui uma área de 145.694 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 6.366.647 habitantes distribuídos em 184 Municípios.

A população urbana do Ceará correspondia a 65,37% da população total do Estado.

As principais cidades do Estado são Fortaleza, a capital, com 1.743.335 habitantes; Juazeiro do Norte com 167.055; Maracanaú com 133.953 habi-

tantes; Sobral com 97.561 habitantes; Caucaia com (72.650 habitantes; e Crato com 57.598 habitantes.

Os principais rios do Ceará são: Jaguaribe, Salgado, Banabuiú, Acaraú, Curu, Correaú, Pacoti, Piranji e Choró, que são mananciais utilizados para o abastecimento de água à população do Estado.

Em 1991, 99,60% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia de Água e Esgoto do Ceará - CAGECE, até 1991 tinham sido implantados 145 sistemas de abastecimento de água em sedes municipais e 31 sistemas em distritos, num total de 176 sistemas, dos quais, 121 em sedes municipais e 31 em distritos estão sob a responsabilidade da CAGECE. Em 1991, existiam 39 sedes municipais sem sistema de abastecimento de água, o que corresponde a um índice de atendimento de 78,80% para as sedes municipais.

A população urbana total abastecida em 1991, era de 2.478.427 habitantes, correspondendo a 59,61% da população urbana do Ceará.

A população urbana total atendida pela CAGECE era de 2.056.000 habitantes em 1991, sendo 1.480.000 em Fortaleza e 576.000 no Interior. A população urbana total das cidades operadas pela CAGECE era de 3.204.000 habitantes, sendo 1.866.000 na capital e 1.338.000 no interior. A relação população atendida/população urbana da cidade é de 79,31% para Fortaleza e de 43,05% para as demais cidades atendidas pela CAGECE.

O volume de água produzido em 1991 pela CAGECE foi de 406.000 m3/dia, sendo que 276.000 m3/dia se destinaram ao abastecimento de Fortaleza e 130.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 197 l/hab/dia, sendo 186 l/hab/dia para Fortaleza e 226 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 71,67% em 1991.

d) Rio Grande do Norte

O Estado do Rio Grande do Norte possui uma área de 53.167 km2. Segundo dados do Censo Realizado em 1991, abrigava uma população de 2.415.567 habitantes distribuídos em 152 municípios.

A população urbana do Rio Grande do Norte correspondia a 69,10% da população total do Estado.

As principais cidades do Estado são Natal, a capital, com 459.827 habitantes; Mossoró com 191.959 habitantes; Parnamirim com 63.253 habitantes; e Ceará-Mirim com 51.938 habitantes.

O Rio Grande do Norte tem como principais rios o Mossoró, Apodi, Piranhas-Açu, Potengi, Trairi, Jundiaí, Jacu, Seridó e Curimataú, que são mananciais utilizados para o abastecimento de água à população do Estado.

Em 1991, 99,38% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia de Águas e Esgotos do Rio Grande do Norte - CAERN, até 1991, tinham sido implantados 135 sistemas de abastecimento de água em sedes municipais e 46 sistemas em distritos, num total de 181 sistemas, dos quais, 125 em sedes municipais e 9 em distritos estão sob a responsabilidade da CAERN. Em 1991, existiam 17 sedes municipais sem sistema de abastecimento de água, o que corresponde a um índice de atendimento de 88,82% para as sedes municipais.

A população urbana total abastecida em 1991, era de 1.414.620 habitantes, correspondendo a 84,81% da população urbana do Rio Grande do Norte.

A população urbana total atendida pela CAERN era de 1.287.000 habitantes em 1991, sendo 553.000 em Natal e 734.000 no Interior. A população urbana total das cidades operadas pela CAERN era de 1.541.000 habitantes, sendo 607.000 na Capital e 934.000 no interior. A relação população atendida/população urbana da cidade é de 91,10% para Natal e de 78,59% para as demais cidades atendidas pela CAERN.

O volume de água produzido em 1991 pela CAERN foi de 335.000 m3/dia, sendo que 173.000 m3/dia se destinaram ao abastecimento de Natal e 162.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 260 l/hab/dia, sendo 313 l/hab/dia para Natal e 221 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 59,10% em 1991.

e) Paraíba

O Estado da Paraíba possui uma área de 53.958 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 3.201.114 habitantes distribuídos em 171 municípios.

A população urbana da Paraíba correspondia a 64,10% da população total do Estado.

As cidades mais populosas do Estado são João Pessoa, a capital, com 497.306 habitantes; Campina Grande com 302.372 habitantes; Santa Rita com 86.264 habitantes; Patos com 79.444 habitantes; Bayeux com 77.325 habitantes; e Souza com 60.414 habitantes.

Os principais rios são o Paraíba, Pianco, Piranhas, Taperoá, Mamanguape, Curimataú, do Peixe, Camaratuba, Espimharas, Miriri e Gramame, que são utilizados para o abastecimento de água à população da Paraíba.

Em 1991, 98,90% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia de Água e Esgoto da Paraíba - CAGEPA, até 1991 tinham sido implantados 155 sistemas de abastecimento de água em sedes municipais e 20 sistemas em distritos, num total de 175 sistemas, dos quais, 147 em sedes municipais e 20 em distritos estão sob a responsabilidade da CAGEPA. Em 1991, existiam 16 sedes municipais sem sistema de abastecimento de água, o que corresponde a um índice de atendimento de 90,64% para as sedes municipais.

A população urbana total abastecida em 1991, era de 1.791.000 habitantes, correspondendo a 87,03% da população urbana da Paraíba.

A população urbana total atendida pela CAGEPA era de 1.703.000 habitantes 1991, sendo 456.000 em João Pessoa e 1.247.000 no Interior. A população urbana total das cidades operadas pela CAGEPA era de 1.770.000 habitantes, sendo 499.000 habitantes na Capital e 1.271.000 habitantes no interior. A relação população atendida/população urbana da cidade é de 91,38% para João Pessoa e de 98,11% para as demais cidades atendidas pela CAGEPA.

O volume de água produzido em 1991 pela CAGEPA foi de 437.000 m3/dia, sendo que 152.000 m3/dia se destinaram ao abastecimento de João Pessoa e 285.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 257 l/hab/dia, sendo 333 l/hab/dia para João Pessoa e 229 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 53,09% em 1991.

f) Pernambuco

O Estado de Pernambuco possui uma área total de 101.023 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 7.127.855 habitantes, distribuídos em 168 municípios.

A população urbana de Pernambuco correspondia a 70,87% da população total do Estado.

As principais cidades do Estado são Recife, a capital, com 1.269.995 habitantes; Jaboatão dos Guararapes com 482.434 habitantes; Olinda com 340.637 habitantes; Caruaru com 213.557 habitantes; Paulista com 211.634 habitantes; Petrolina com 174.972 habitantes; Cabo com 125.351 habitantes; e Vitória de Santo Antão com 106.644 habitantes.

O São Francisco, o Capibaribe, o Ipojuca, o Una, o Pajeú, o Moxotó e o Jaboatão são os principais rios de Pernambuco.

Em 1991, apenas 35,84% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia Pernambucana de Saneamento - COMPESA, até 1991, tinham sido implantados 167 sistemas de abastecimento de água em sedes municipais e 215 sistemas em distritos, num total de 382 sistemas. Do total, a COMPESA era responsável pela operação de 232 sistemas, sendo que, 157 eram em sedes municipais e 75 em distritos. Havia apenas uma sede municipal no Estado sem sistema de abastecimento de água, o que corresponde a um índice de atendimento de 99,40% para as sedes municipais.

A população urbana total abastecida em 1991, era de 4.658.969 habitantes, correspondendo a 91,47% da população urbana de Pernambuco.

A população urbana total atendida pela COMPESA era de 4.486.000 habitantes em 1991, sendo 1.187.000 em Recife e 3.299.000 no Interior. A população urbana total das cidades operadas pela COMPESA era de 4.920.000 habitantes, sendo 1.300.000 habitantes na Capital e 3.620.000 habitantes no interior. A relação população atendida/população urbana da cidade é de 91,31% para Recife e de 91,13% para as demais cidades atendidas pela COMPESA.

O volume de água produzido em 1991 pela COMPESA foi de 1.046.000 m3/dia, sendo que 486.000 m3/dia se destinaram ao abastecimento de Recife e 560.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 233 l/hab/dia, sendo 409 l/hab/dia para Recife e 170 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 53,25% em 1991.

g) Alagoas

O Estado de Alagoas possui uma área de 29.107 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 2.514.100 habitantes divididos em 99 municípios.

A população urbana de Alagoas correspondia a 58,95% da população total do Estado.

As principais cidades do Estado são Maceió, a capital, com 554.727 habitantes; Arapiraca com 165.379; Palmeira dos Índios com 61.514 habitantes; União dos Palmares com 57.496 habitantes; Floriano Peixoto com 55.793 habitantes; e Rio Largo com 53.827 habitantes.

Os rios São Francisco, Mundaú e Paraíba do Meio são mananciais utilizados para o abastecimento de água à população do Estado.

Em 1991, apenas 28,36% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia de Saneamento de Alagoas - CASAL, até 1991 tinham sido implantados 99 sistemas de abastecimento de água em sedes municipais e 145 sistemas em distritos, num total de 244 sistemas, dos quais, 79 em sedes municipais e 83 em distritos estão sob a responsabilidade da CASAL. Em 1991, não existia nenhuma sede municipal sem sistema de abastecimento de água, ou seja, um índice de atendimento de 100% para as sedes municipais.

A população urbana total abastecida em 1991, era de 1.119.224 habitantes, correspondendo a 75,57% da população urbana de Alagoas.

A população urbana total atendida pela CASAL era de 935.000 habitantes em 1991, sendo 474.000 em Maceió e 461.000 no Interior. A população urbana total das cidades operadas pela CASAL era de 1.255.000 habitantes, sendo 582.000 habitantes na Capital e 673.000 habitantes no interior. A relação população atendida/população urbana da cidade é de 81,44% para Maceió e de 68,50% para as demais cidades atendidas pela CASAL.

O volume de água produzido em 1991 pela CASAL foi de 191.000 m3/dia, sendo que 130.000 m3/dia se destinaram ao abastecimento de Maceió e 61.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 204 l/hab/dia, sendo 274 l/hab/dia para Maceió e 132 l/hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 67,54% em 1993.

h) Sergipe

O Estado de Sergipe possui uma área de 21.863 km2. Segundo dados do Censo realizado em 1991, abrigava uma população de 1.491.876 habitantes distribuídos em 74 municípios.

A população urbana de Sergipe correspondia a 67,22% da população total do Estado.

As cidades mais populosas do Estado são Aracaju, a capital, com 401.244 habitantes; Lagarto com 72.366 habitantes; Socorro com 68.474 habitantes; Itabaiana com 64.357 habitantes; e Estância com 53.849 habitantes.

Os principais rios são o São Francisco, Vaza Barris, Sergipe, Japaratuba, Piauí e Real, que são mananciais utilizados para o abastecimento à população do Estado.

Em 1991, apenas 22,76% da população urbana vivia na área semi-árida do Estado.

Segundo a Companhia de Saneamento de Sergipe - DESO, até 1991 tinham sido implantados 74 sistemas de abastecimento de água em sedes municipais e 456 sistemas em distritos, num total de 530 sistemas, dos quais, 69 em sedes municipais e 100 em distritos estão sob a responsabilidade do DESO. Em 1991, não existia nenhuma sede municipal sem sistema de abastecimento de água, ou seja, um índice de atendimento de 100% para as sedes municipais.

A população urbana total abastecida em 1991, era de 887.000 habitantes, correspondendo a 88,52% da população urbana de Sergipe.

A população urbana total atendida pelo DESO era de 802.000 habitantes em 1991, sendo 318.000 em Aracaju e 484.000 no Interior. A população urbana total das cidades operadas pelo DESO era de 889.000 habitantes, sendo 401.000 na Capital e 488.000 no interior. A relação população atendida/população urbana da cidade é de 79,30% para Aracaju e de 99,18% para as demais cidades atendidas pelo DESO.

O volume de água produzido em 1991 pelo DESO foi de 242.000 m3/dia, sendo que 158.000 m3/dia se destinaram ao abastecimento de Aracaju e 84.000 m3/dia ao interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 302 l/hab/dia, sendo 497 l/hab/dia para Aracaju e 174 l/ hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 61,98% em 1991.

i) Bahia

O Estado da Bahia possui uma área de 566.979 km2. Segundo dados do Censo Realizado em 1991, abrigava uma população de 11.867.991 habitantes distribuídos em 415 municípios.

A população urbana da Bahia correspondia a 59,12% da população total do Estado.

As cidades mais populosas são Salvador, a capital, com 2.072.058 habitantes; Feira de Santana com 352.364 habitantes; Vitória da Conquista com 188.351 habitantes; Itabuna com 174.628 habitantes; Ilhéus com 149.144 habitantes; e Juazeiro com 101.288 habitantes.

Os principais rios do Estado são o São Francisco, Paraguaçu, Jequitinhonha, Itapicuru, Capivari e de Contas.

Em 1991, apenas 36,23% da população urbana vivia na área semiárida do Estado.

Segundo a Empresa Baiana de Águas e Saneamento - EMBASA, até 1991 tinham sido implantados 387 sistemas de abastecimento de água em sedes municipais e 130 sistemas em distritos, num total de 517 sistemas, dos quais, 295 em sedes municipais e 99 em distritos estão sob a responsabilidade da EMBASA. Em 1991, existiam 28 sedes municipais sem sistema de abastecimento de água, o que corresponde a um índice de atendimento de 93,25% para as sedes municipais.

A população urbana total abastecida em 1991, era de 5.094.228 habitantes, correspondendo a 72,69% da população urbana da Bahia.

A população urbana total atendida pela EMBASA era de 4.368.000 habitantes em 1991, sendo 1.961.000 em Salvador e 2.407.000 no Interior. A população urbana total das cidades operadas pela EMBASA era de 5.744.000 habitantes, sendo 2.072.000 na Capital e 3.672.000 no interior. A relação população atendida/população urbana da cidade é de 94,64% para Salvador e de 65,55% para as demais cidades atendidas pela EMBASA.

O volume de água produzido em 1991 pela EMBASA foi de 1.167.000

m3/dia, sendo que 667.000 m3/dia se destinaram ao abastecimento de Salvador e 500.000 m3/dia ao do interior.

Assim, em 1991, o volume produzido de água por população abastecida foi de 267 l/hab/dia, sendo 340 l/hab/dia para Salvador e 208 l/ hab/dia para o interior.

O índice de faturamento, que é a relação entre o volume faturado e o volume produzido era de 50,21% em 1991.

3.1.2.2- Estimativa da demanda de água para abastecimento urbano

Para estimativa da demanda de água para abastecimento urbano, procurou-se, inicialmente, realizar uma comparação, para o ano de 1990, entre as populações urbanas, que haviam sido projetadas pelo PLIRHINE para os Estados Nordestinos, e as observadas, para este mesmo ano, determinadas com base nos dados dos Censos de 1980 e 1991, do IBGE.

Como se percebe da análise da TABELA 3.12, para a região como um todo, houve uma diferença insignificante, de apenas 1%, entre a projeção do

TABELA 3.12 - COMPARAÇÃO ENTRE A POPULAÇÃO
URBANA ESTIMADAPELO PLIRHINE PARA O ANO
DE 1990 E A POPULAÇÃO URBANA OBSERVADA

EM	1 00	าก เ	Δ	RIT	ΔΝ	TES
	1.00	ו טע	ПΑ	DII.	ΑIN	IEO

ESTADO	OBSERVADA PLIRHINE				
	(A)	(B)	(A)/(B)		
MARANHÃO	1.893	1.814	1,04		
PIAUÍ	1.316	1.384	0,95		
CEARÁ	4.016	3.900	1,03		
RIO GRANDE DO NORTE	1.609	1.745	0,92		
PARAÍBA	1.988	1.956	1,02		
PERNAMBUCO	4.921	5.926	0,83		
ALAGOAS	1.427	1.282	1,11		
SERGIPE	960	795	1,21		
BAHIA	6.761	6.381	1,06		
NORDESTE	24.891	25.183	0,99		

PLIRHINE e a população observada. O PLIRHINE subestimou o crescimento da população urbana dos Estados do Maranhão, Ceará, Paraíba, Alagoas, Sergipe e Bahia, sendo que somente para Alagoas e principalmente para Sergipe, a diferença foi significativa. Por outro lado, houve uma superestimação do crescimento da população urbana do Piauí, Rio Grande do Norte e Pernambuco, sendo que somente para Pernambuco a diferença foi significativa.

Em que pesem serem de qualidade aceitável as projeções realizadas pelo PLIRHINE para as populações urbanas dos Estados relativas ao ano de 1990, principalmente quando se sabe que ao ser feito aquele trabalho, somente se dispunha dos Censos até 1970, resolveu-se elaborar, porem, novas estimativas para a demanda para o abastecimento urbano.

Os coeficientes de demandas "per capita" para as populações urbanas dependem das características do sistema de abastecimento de água e dos padrões de demanda. Num grande centro urbano essas características são bastantes distintas daquelas apresentadas em menores centros, fato que é comprovado pela correlação positiva entre os coeficientes "per capita" e o tamanho das cidades.

O PLIRHINE estabeleceu seis classes de cidades, com a dotação "per capita" variando em função do número de habitantes e da evolução na escala do tempo, até o atingimento de padrões sanitários ideais no ano 2000, baseando-se também em uma melhoria progressiva dos níveis de renda.

TABELA 3.13 - DEMANDA DE ÁGUA PARA O
ABASTECIMENTO URBANO DOS ESTADOS
NORDESTINO RELATIVAS AO ANO DE 1991

ESTADO	DEMANDA URBANA
MARANHÃO PIAUÍ	183,195
PIAUI	159,266

EM HM3/ANO

CEARÁ 520,023 RIO GRANDE DO NORTE 190,555 **PARAÍBA** 196,966 **PERNAMBUCO** 593,765 **ALAGOAS** 175,220 **SERGIPE** 97,599 **BAHIA** 800,478 MINAS GERAIS (*) 71,042

NORDESTE 2.988,109

NOTA: (*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

TABELA 3.14 - DEMANDA DE ÁGUA PARA ABASTECIMENTO URBANO DAS UNIDADES DE PLANEJAMENTO RELATIVAS AO ANO DE 1991

		EM HM3/ANO
UP	UNIDADE DE PLANEJAMENTO	DEMANDA
		URBANA
01	TOCANTINS MARANHENSE	29,350
02	GURUPÍ (*)	15,793
03	MEARIM-GRAJAÚ-PINDARÉ	80,892
04	ITAPECURU	28,412
05	MUNIM-BARREIRINHAS	9,040
06		191,189
07	ACARAÚ-COREAÚ	37,068
80	CURU	15,802
09	FORTALEZA	364,047
10	JAGUARIBE	90,891
11	APODI-MOSSORÓ	34,959
	PIRANHAS-AÇU	54,327
_	LESTE POTIGUAR ,	141,820
	ORIENTAL DA PARAÍBA	156,415
	ORIENTAL DE PERNAMBUCO	514,395
	BACIAS ALAGOANAS	153,830
17	\	294,371
18	VAZA-BARRIS	77,269
19	ITAPICURU-REAL	42,445
20	3	473,943
21	CONTAS-JEQUIÉ	52,873
22		92,846
23	JEQUITINHONHA (*)	8,635
24	EXTREMO SUL DA BAHIA	27,497
T	OTAL	2.988,109

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

No presente estudo, utilizou-se as mesmas seis classes de cidades estabelecidas no PLIRHINE, mantendo-se, porem, fixos os coeficientes de demanda propostos por aquele estudo, a partir do ano de 1990.

Assim, para as cidades com até 5.000 habitantes, utilizou-se um coeficiente de 145 l/hab/dia; Para as cidades com população entre 5.000 e 10.000 habitantes, utilizou-se um coeficiente de 185 l/hab/dia; Para as cidades com população entre 10.000 e 20.000 habitantes, utilizou-se um coeficiente de 230 l/hab/dia; Para as cidades com população entre 20.000 e 100.000 habitantes, utilizou-se um coeficiente de 270 l/hab/dia; Para as cidades com população entre 100.000 e 500.000 habitantes, utilizou-se um coeficiente de 330 l/hab/

dia; Finalmente, para cidades com população acima de 500.000 habitantes, utilizou-se um coeficiente de 460 l/hab/dia.

É importante chamar a atenção para o fato de atualmente nem todas as cidades contarem com sistema de abastecimento de água e as que contam, nem todas o possuem com suficiência para o atendimento pleno da população urbana municipal. Entretanto, sendo a água para o abastecimento humano o uso prioritário, deve-se reservar aprioristicamente tais demandas desde a situação atual.

Nas TABELA 3.13 e 3.14, estão mostrados os valores estimados para as demandas de água para abastecimento urbano, relativos ao ano de 1991, para os Estados da Região e unidades de planejamento, respectivamente.

As projeções das demandas de água para o abastecimento urbano, foram realizadas aplicando-se para as demandas estimadas para 1991, as mesmas taxas de crescimento utilizadas nas projeções das populações urbanas.

Os resultados são apresentados na TABELA 3.15, para os Estados Nordestinos.

TABELA 3.15 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA ABASTECIMENTO URBANO ATÉ O ANO 2020 DOS ESTADOS DO NORDESTE

EM HM3/ANO

ESTADO	DEMANDA URBANA			
	2000	2010	2020	
MARANHÃO	228,640	266,598	295,928	
PIAUÍ	224,796	266,837	300,876	
CEARÁ	657,233	775,314	881,882	
RIO GRANDE DO NORTE	243,356	290,146	325,142	
PARAÍBA	257,203	308,332	352,428	
PERNAMBUCO	755,964	889,421	998,200	
ALAGOAS	236,978	273,876	301,148	
SERGIPE	134,932	158,385	175,970	
BAHIA	1.081,666	1.278,297	1.418,764	
MINAS GERAIS (*)	101,014	123,022	139,284	
NORDESTE	3.921,781	4.630,228	5.189,621	

NOTA:(*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

TABELA 3.16 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA ABASTECIMENTO URBANO ATÉ O ANO 2020 DAS UNIDADES DE PLANEJAMENTO

EM HM3/ANO

UP	UNIDADE DE PLANEJAMENTO	DEMANDAS URBANAS		
		2000	2010	2020
01	TOCANTINS MARANHENSE	34,934	39,807	43,777
02	GURUPÍ (*)	20,346	24,070	26,872
03	MEARIM-GRAJAÚ-PINDARÉ	102,676	120,661	134,350
04	ITAPECURU	35,234	40,959	45,411
05	MUNIM-BARREIRINHAS	11,918	14,244	15,964
06	PARNAÍBA	267,335	318,679	360,806
07	ACARAÚ-COREAÚ	53,408	67,717	80,619
80	CURU	22,328	28,032	33,177
09	FORTALEZA	432,733	490,817	543,283
10	JAGUARIBE	129,757	163,762	194,427
11	APODI-MOSSORÓ	45,061	54,022	60,734
12	PIRANHAS-AÇU	74,969	92,870	107,727
13	LESTE POTIGUAR	181,662	216,876	243,517
14	ORIENTAL DA PARAÍBA	198,866	234,711	265,592
15	ORIENTAL DE PERNAMBUCO	639,658	742,027	825,153
16	BACIAS ALAGOANAS	205,021	237,327	261,745
17	SÃO FRANCISCO (*)	425,969	520,956	592,282
18	VAZA-BARRIS	103,143	119,275	131,208
19	ITAPICURU-REAL	69,246	87,395	100,563
20	PARAGUAÇU-SALVADOR	614,436	712,999	783,662
21	CONTAS-JEQUIÉ	79,123	97,385	110,357
22	PARDO-CACHOEIRA	123,916	145,751	161,415
23	JEQUITINHONHA (*)	12,838	15,894	18,140
24 E	EXTREMO SUL DA BAHIA	37,204	43,992	48,840
T	OTAL	3.921,781	4.630,228	5.189,621

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

Para as unidades de planejamento, os resultados são apresentados na TABELA 3.16.

3.1.3 - Demanda humana rural difusa

A demanda humana rural difusa corresponde a água a ser alocada ao atendimento das populações humanas que habitam o meio rural.

Segundo o PLIRHINE, estima-se que as populações de baixa renda e não servidas por sistemas de abastecimento demandam diariamente em torno de 70 a 100 l/hab/dia, conforme as dotações discriminadas a seguir:

DISCRIMINAÇÃO	NECESSIDADE I/dia
BEBIDA PREPARO DE ALIMENTOS ASSEIO CORPORAL LAVAGEM DE ROUPA LIMPEZA DE CASA E UTENSÍLIOS DE COZINHA	2 A 3 3 A 5 25 A 32 20 A 30
TOTAL DIÁRIO	70 A 100

3.1.3.1- Estimativa da demanda atual para o abastecimento da população rural

A população rural nordestina era de 17.902.156 habitantes em 1980, e passou para 17.323.473 habitantes em 1991, o que significa que houve um decréscimo na população residente no meio rural da Região no período. A taxa de crescimento da população rural foi de -0,32% ao ano.

É importante relembrar que o início da década de 80 coincidiu com uma das maiores e mais prolongadas secas ocorridas na Região, que foi a seca de 1979/83, seca esta que de certo deve ter provocado uma aceleração nos deslocamentos do campo para as cidades, embora esses deslocamentos tenham sido amortecidos pela recessão econômica, pelo fechamento das fronteiras agrícolas e pelas medidas emergências adotadas pelo Governo Federal no período.

Da mesma forma que foi feito para o abastecimento urbano, inicialmente, procurou-se realizar uma comparação para o ano de 1990, entre as populações rurais que haviam sido projetadas pelo PLIRHINE para os Estados Nordestinos e a observadas para este mesmo ano, determinadas com base nos dados dos Censos de 1980 e 1991, do IBGE.

Como se percebe da análise da TABELA 3.17, houve uma superestimação por parte do PLIRHINE da população rural dos Estados Nordestinos.

Assim, também resolveu-se realizar uma nova estimativa da demanda de água para atender em 1991, a população humana rural difusa residente nos Estados Nordestinos, admitindo-se um coeficiente de demanda "per capita" de 70 l/hab/dia.

A TABELA 3.18, mostra a estimativa da demanda humana rural difusa dos Estados Nordestinos para o ano de 1991.

TABELA 3.17 - COMPARAÇÃO ENTRE A POPULAÇÃO **RURAL ESTIMADA PELO PLIRHINE PARA O ANO DE 1990** E A POPULAÇÃO RURAL OBSERVADA EM 1.000 HABITANTES

EM 1.000 HABITANTES

ESTADO	OBSERVADA	PLIRHINE	
	(A)	(B)	(A)/(B)
MARANHÃO	2.937	2.844	1,03
PIAUÍ	1.217	1.768	0,69
CEARÁ	2.229	3.494	0,64
RIO GRANDE DO NORTE	749	1.306	0,57
PARAÍBA	1.164	1.437	0,81
PERNAMBUCO	2.100	2.702	0,78
ALAGOAS	1.030	1.288	0,80
SERGIPE	492	558	0,88
BAHIA	4.846	5.937	0,82
NORDESTE	16.764	21.334	0,79

TABELA 3.18 - ESTIMATIVA DA DEMANDA HUMANA **RURAL DIFUSA DOS ESTADOSNORDESTINOS EM 1991**

EM HM3/ANO

ESTADO	DEMANDA
MARANHÃO	75,552
PIAUÍ	31,042
CEARÁ	56,328
RIO GRANDE DO NORTE	19,068
PARAÍBA	29,358
PERNAMBUCO	53,047
ALAGOAS	26,369
SERGIPE	12,494
BAHIA	123,948
MINAS GERAIS (*)	15,409
NORDESTE	442,615

NOTA: (*) - REGIÃO DO NORTE DE MINAS, NCLUÍDA NO NORDESTE DA SUDENE

22,791

31,523

20,328

12,445

2,983

4,858

Na TABELA 3.19, apresenta a estimativa da demanda humana rural difusa das unidades de planejamento para o ano de 1991.

Suplementarmente, foi elaborada também uma estimativa das necessidades de água para atender as populações rurais residentes na Zona semiárida Nordestina, para o 1991, apresentada a seguir.

a) Piauí

Em 1991, a população rural do Piauí correspondia a 47,05% da população total do Estado.

TABELA 3.19 - ESTIMATIVA DA DEMANDA HUMANA RURAL DIFUSA DAS LINIDADES DE PLANEJAMENTO EM 1991

		EM HM3/ANC
UP	UNIDADE DE PLANEJAMENTO	DEMANDA RURAL
01	TOCANTINS MARANHENSE	4,715
02	GURUPÍ (*)	9,875
03	MEARIM-GRAJAÚ-PINDARÉ	37,791
04	ITAPECURU	11,377
05	MUNIM-BARREIRINHAS	7,510
06	PARNAÍBA	41,337
07	ACARAÚ-COREAÚ	12,102
80	CURU	4,919
09	FORTALEZA	6,748
10	JAGUARIBE	26,547
11	APODI-MOSSORÓ	4,517
12	PIRANHAS-AÇU	14,325
13	LESTE POTIGUAR	13,950
14	ORIENTAL DA PARAÍBA	15,634
15	ORIENTAL DE PERNAMBUCO	28,405
16	BACIAS ALAGOANAS	18,077
17	SÃO FRANCISCO (*)	83,119
18	VAZA-BARRIS	6,736

TOTAL 442,612

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

ITAPICURU-REAL

CONTAS-JEQUIÉ

PARDO-CACHOEIRA

JEQUITINHONHA (*)

PARAGUAÇU-SALVADOR

EXTREMO SUL DA BAHIA

19

20

23

Naquele ano, a população rural do Piauí era de 1.214.953 habitantes, dos quais 1.182.570 habitantes, que correspondem a 97,33%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área do semi-árido do Piauí era, em 1991, da ordem de 30,21 milhões de m3/ano.

b) Ceará

Em 1991, a população rural do Ceará correspondia a 34,63% da população total do Estado.

Naquele ano, a população rural do Ceará era de 2.204.640 habitantes, dos quais 2.175.758 habitantes, que correspondem a 98,69%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área do semi-árido do Ceará era, em 1991, da ordem de 55,59 milhões de m3/ano.

c) Rio Grande do Norte

Em 1991, a população rural do Rio Grande do Norte correspondia a 30,90% da população total do Estado.

Naquele ano, a população rural do Rio Grande do Norte era de 746.300 habitantes, dos quais 709.327 habitantes, que correspondem a 95,05%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área do semi-árido do Rio Grande do Norte era, em 1991, da ordem de 18,12 milhões de m3/ano.

d) Paraíba

Em 1991, a população rural da Paraíba correspondia a 35,90% da população total do Estado.

Naquele ano, a população rural da Paraíba era de 1.149.048 habitantes, dos quais 1.103.831 habitantes, que correspondem a 96,06%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área semi-árida do Paraíba era, em 1991, da ordem de 28,20 milhões de m3/ano.

e) Pernambuco

Em 1991, a população rural de Pernambuco correspondia a 29,13% da população total do Estado.

Naquele ano, a população rural de Pernambuco era de 2.076.201 habitantes, dos quais 1.638.524 habitantes, que correspondem a 78,92%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área semi-árida de Pernambuco era, em 1991, da ordem de 41,86 milhões de m3/ano.

f) Alagoas

Em 1991, a população rural de Alagoas correspondia a 41,05% da população total do Estado.

Naquele ano, a população rural de Alagoas era de 1.032.067 habitantes, dos quais 506.095 habitantes, que correspondem a 49,04%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área semi-árida de Alagoas era, em 1991, da ordem de 12,93 milhões de m3/ano.

g) Sergipe

Em 1991, a população rural de Sergipe correspondia a 32,78% da população total do Estado.

Naquele ano, a população rural de Sergipe era de 488.999 habitantes, dos quais 269.292 habitantes, que correspondem a 55,07%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área semi-árida de Sergipe era, em 1991, da ordem de 6,88 milhões de m3/ano.

h) Bahia

Em 1991, a população rural da Bahia correspondia a 40,88% da população total do Estado.

Naquele ano, a população rural da Bahia era de 4.851.221 habitantes, dos quais 3.233.482 habitantes, que correspondem a 66,45%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que as necessidades de água para atender a população humana rural difusa residente na área semi-árida da Bahia era, em 1991, da ordem de 82,61 milhões de m3/ano.

i) Minas Gerais

Em 1991, a população rural de Minas Gerais correspondia a 25,13% da população total do Estado.

Naquele ano, a população rural de Minas Gerais era de 3.956.259 habitantes, dos quais 603.084 habitantes, que correspondem a 15,24%, viviam na área semi-árida do Estado.

Assim, pode-se estimar que a necessidade de água para atender a população humana rural difusa residente na área semi-árida de Minas Gerais era, em 1991, da ordem de 15,40 milhões de m3/ano.

3.1.3.2 - Evolução da demanda de água para abastecimento humano rural difuso

As projeções das demandas de água para o abastecimento humano rural difuso foram realizadas aplicando-se para as demandas estimadas do ano de 1991, as mesmas taxas de crescimento utilizadas nas estimativas das populações rurais.

Os resultados são apresentados na TABELA 3.20, a seguir, para os Estados da Região.

Para as unidades de planejamento, os resultados são apresentados na TABELA 3.21, a sequir.

3.2 - Demanda da pecuária

A demanda de água para pecuária corresponde ao somatório das demandas dos rebanhos animais domésticos de médio e grande portes.

Os coeficientes de demanda "per capita" para os rebanhos de animais domésticos são muito bem estudados pela literatura técnica.

Para efeito de cálculo de demandas os efetivos pecuários foram transformados em uma unidade hipotética proposta pelo PLIRHINE, denominada

BEDA - bovinos equivalentes para demanda de água. Esta unidade agrega a projeções dos bovinos, eqüinos, ovinos, caprinos e suínos, ponderando o que cada espécie utiliza de água em relação ao bovino.

Os principais rebanhos nordestinos são o bovino e o suíno.

Para o cálculo de demanda de água dos rebanhos aplicou-se o mesmo coeficiente de demanda selecionado pelo PLIRHINE, que admitiu que a demanda de água de um bovino é da ordem de 50 l/cab/dia.

Os efetivos pecuários foram obtidos da publicação do IBGE "Produção da Pecuária Municipal - 1988".

O comportamento da população animal é diretamente relacionada com as condições vigentes no meio rural, em especial com a ocorrência de períodos de estiagem.

A ocorrência de estiagens prolongadas, nos últimos anos, provocou desfalques substanciais nos efetivos pecuários, devido à venda pelos produtores

TABELA 3.20 - PROJEÇÃO DA DEMANDAS DE ÁGUA PARA ABASTECIMENTO HUMANO RURAL DIFUSO ATÉ O ANO 2020 DOS ESTADOS DO NORDESTE

EM HM3/ANO

ESTADO	DEMANDA HUMANA RURAL DIFUSA			
	2000	2010	2020	
MARANHÃO	80,355	86,078	92,184	
PIAUÍ	30,507	29,919	29,357	
CEARÁ	51,202	46,041	41,417	
RIO GRANDE DO NORTE	18,319	17,527	16,786	
PARAÍBA	26,189	23,072	20,312	
PERNAMBUCO	47,779	42,541	37,865	
ALAGOAS	26,930	27,568	28,207	
SERGIPE	11,855	11,165	10,527	
BAHIA	125,144	126,498	127,878	
MINAS GERAIS (*)	14,947	14,436	13,950	
NORDESTE	433,226	424,845	418,483	

NOTA:(*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

TABELA 3.21 - PROJEÇÃO DA DEMANDAS DE ÁGUA PARA ABASTECIMENTO HUMANO RURAL DIFUSO ATÉ O ANO 2020 DAS UNIDADES DE PLANEJAMENTO

EM HM3/ANO

UP	UNIDADE DE PLANEJAMENTO	DEMANDA RURAL		
		2000	2010	2020
01	TOCANTINS MARANHENSE	5,015	5,372	5,754
02	GURUPÍ (*)	10,502	11,250	12,048
03	MEARIM-GRAJAÚ-PINDARÉ	40,194	43,056	46,111
04	ITAPECURU	12,100	12,962	13,882
05	MUNIM-BARREIRINHAS	7,988	8,557	9,164
06	PARNAÍBA	40,527	39,713	39,003
07	ACARAÚ-COREAÚ	11,001	9,892	8,898
80	CURU	4,472	4,021	3,617
09	FORTALEZA	6,134	5,516	4,962
10	JAGUARIBE	24,132	21,699	19,520
11	APODI-MOSSORÓ	4,340	4,152	3,977
12	PIRANHAS-AÇU	13,034	11,752	10,610
13	LESTE POTIGUAR	13,189	12,408	11,695
14	ORIENTAL DA PARAÍBA	13,946	12,286	10,817
15	ORIENTAL DE PERNAMBUCO	25,584	22,779	20,276
16	BACIAS ALAGOANAS	17,958	17,882	17,850
17	SÃO FRANCISCO (*)	81,197	79,320	77,699
18	VAZA-BARRIS	6,537	6,323	6,127
19	ITAPICURU-REAL	22,688	22,585	22,508
20	PARAGUAÇU-SALVADOR	31,827	32,171	32,522
21	CONTAS-JEQUIÉ	20,524	20,746	20,973
22	PARDO-CACHOEIRA	12,504	12,572	12,644
23	JEQUITINHONHA (*)	2,930	2,871	2,816
24	EXTREMO SUL DA BAHIA	4,905	4,958	5,012
TOTAL 433,228 424,843 418,485				

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

de grande parte de seus planteis, principalmente, matrizes, dificultando a elaboração de projeção do efetivo pecuário da Região.

A solução encontrada para efeito de projeção da demanda para abastecimento pecuário, tendo em vista a desestruturação da pecuária regional provocada pelas grandes secas de 1979/83 e de 1990/93, foi admitir, no presente estudo, que o efetivo pecuário relativo ao ano de 1988, permaneceria

constante até o ano de 2020, ou seja, considerou-se o efetivo pecuário relativo ao ano de 1988, como representativo do rebanho médio do período.

A TABELA 3.22 apresenta, para os Estados da Região, os valores de demandas de água para a pecuária.

Para as unidades de planejamento, as demandas são apresentados na TABELA 3.23.

3.3 - Demanda na irrigação

Em função das deficiências de chuva, tanto em relação a quantidade quanto à distribuição, a irrigação é tecnologia indispensável à implantação, na região Nordeste, de uma agricultura moderna.

No entanto, o Nordeste é, no mundo, das regiões semi-áridas mais populosas a de menor proporção de área irrigada em relação a área total.

TABELA 3.22 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA ABASTECIMENTO PECUÁRIO ATÉ O ANO 2020 DOS ESTADOS DO NORDESTE

EM HM3/ANO

ESTADO	DEMANDA PECUÁRIA			
	1991	2000	2010	2020
MARANHÃO	107,778	107,778	107,778	107,778
PIAUÍ	101,641	101,641	101,641	101,641
CEARÁ	109,075	109,075	109,075	109,075
RIO GRANDE DO NORTE	32,528	32,528	32,528	32,528
PARAÍBA	46,318	46,318	46,318	46,318
PERNAMBUCO	79,948	79,948	79,948	79,948
ALAGOAS	20,718	20,718	20,718	20,718
SERGIPE	23,170	23,170	23,170	23,170
BAHIA	366,472	366,472	366,472	366,472
MINAS GERAIS (*)	42,662	42,662	42,662	42,662
NORDESTE	930,310	930,310	930,310	930,310

NOTA:(*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

TABELA 3.23 - PROJEÇÃO DA DEMANDAS DE ÁGUA PARA ABASTECIMENTO PECUÁRIO DAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/ANO

UP	UNIDADE DE PLANEJAMENTO	С	DEMANDA F	PECUÁRIA	
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	11,815	11,815	11,815	11,815
02	GURUPÍ (*)	15,970	15,970	15,970	15,970
03	MEARIM-GRAJAÚ-PINDARÉ	44,824	44,824	44,824	44,824
04	ITAPECURU	15,918	15,918	15,918	15,918
05	MUNIM-BARREIRINHAS	8,551	8,551	8,551	8,551
06	PARNAÍBA	124,238	124,238	124,238	124,238
07	ACARAÚ-COREAÚ	23,641	23,641	23,641	23,641
80	CURU	5,973	5,973	5,973	5,973
09	FORTALEZA	8,552	8,552	8,552	8,552
10	JAGUARIBE	57,329	57,329	57,329	57,329
11	APODI-MOSSORÓ	13,960	13,960	13,960	13,960
12	PIRANHAS-AÇU	25,323	25,323	25,323	25,323
13	LESTE POTIGUAR	15,167	15,167	15,167	15,167
14	ORIENTAL DA PARAÍBA	26,040	26,040	26,040	26,040
15	ORIENTAL DE PERNAMBUCO	20,956	20,956	20,956	20,956
16	BACIAS ALAGOANAS	14,534	14,534	14,534	14,534
17	SÃO FRANCISCO (*)	246,931	246,931	246,931	246,931
18	VAZA-BARRIS	16,441	16,441	16,441	16,441
19	ITAPICURU-REAL	62,244	62,244	62,244	62,244
20	PARAGUAÇU-SALVADOR	69,165	69,165	69,165	69,165
21	CONTAS-JEQUIÉ	40,738	40,738	40,738	40,738
22	PARDO-CACHOEIRA	27,369	27,369	27,369	27,369
23	JEQUITINHONHA (*)	12,912	12,912	12,912	12,912
24	EXTREMO SUL DA BAHIA	21,709	21,709	21,709	21,709
	TOTAL	930,310	930,310	930,310	930,310

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

Considerou-se como irrigação pública a que se encontra circunscrita aos perímetros sob responsabilidade técnica e administrativa de órgãos públicos, sendo praticada tanto por colonos como por empresários.

Por sua vez, foi considerada como irrigação privada aquela desenvolvida pela iniciativa particular.

Inicialmente, procurou-se avaliar a evolução da área irrigada proposta pelo PLIRHINE.

Da análise da TABELA 3.24, constata-se que o PLIRHINE foi muito otimista na estimativa do ritmo de crescimento da área irrigada na Região. Em vista disso, resolveu-se utilizar a projeção que foi preparada por consultor especializado do Grupo de Ordenamento do Espaço Regional e Agricultura do Projeto Áridas.

IRRIGADA PARA O NORDESTE ELABORADA PELO PLIRHINE				
ANO	ÁREA IRRIGADA	DEMANDA		
	(HECTARE)	(HM3/ANO)		
1980	244.213	4.409		
1985	424.612	7.585		
1990	741.249	12.528		
1995	1.209.099	20.103		
2000	1.904.499	30.221		

Segundo dados do Censo Agropecuário de 1985, do IBGE, eram irrigados na Região apenas 366.826 ha.

A evolução da área irrigada dos Estados Nordestinos, no período 1970 a 1991, é apresentada na TABELA 3.25. Da análise dos dados, constata-se que a área irrigada da Região passou de 115.972 ha em 1970, para 366.826 ha em 1985, ano de realização do último Censo Agropecuário do IBGE.

Entre 1985 e 1991, a área irrigada dos Estados Nordestinos aumentou em 86.311 ha, passando para 453.137 ha. Ressalte-se que foi a partir de 1985 que a irrigação passou a ter maior impulso na Região, principalmente com o surgimento do Programa de Irrigação do Nordeste - PROINE, em 1985 e, recentemente, com o aumento do volume de recursos para o setor, em decorrência da criação do Fundo de Desenvolvimento do Nordeste - FNE. A área irrigada na região Norte de Minas Gerais, incluída no Nordeste da SUDENE, era de 38.850 ha em 1988.

De acordo com a Secretaria Nacional de Irrigação, do Ministério da Integração Regional (TABELA 3.26), a área irrigada do Nordeste, em 1991, era de 452.420 ha, incluindo áreas do PROVÁRZEAS/PROFIR, DNOCS, DNOS, CODEVASF, linhas de crédito e Decreto Lei Nº 2.032.

TABELA 3.25 - EVOLUÇÃO DA ÁREA IRRIGADA IMPLANTADA POR ESTADO

EM HECTARE

ESTADO		ÁRI	EA IRRIGAD	DA	
	1970	1975	1980	1985	1991
MARANHÃO	1.820	524	2.037	24.034	32.920
PIAUÍ	1.863	1.944	6.386	13.560	22.163
CEARÁ	25.484	29.887	63.599	67.304	71.750
RIO GRANDE DO NORTE	5.471	7.896	15.417	17.588	20.193
PARAÍBA	13.433	18.227	18.085	18.895	19.867
PERNAMBUCO	19.002	34.553	65.039	83.456	105.556
ALAGOAS	13.218	18.643	12.410	27.814	18.021
SERGIPE	8.639	10.678	3.163	7.121	11.871
BAHIA	27.042	41.007	70.602	107.054	150.796
NORDESTE	115.972	163.359	256.738	366.826	453.137

FONTES: 1 - ATÉ 1985, DADOS DOS CENSOS AGROPECUÁRIOS DO IBGE; 2 - PARA 1991, ESTIMATIVAS DO GT - ORGANIZAÇÃO DO ESPAÇO REGIONAL E AGRICULTURA DO PROJETO ÁRIDAS.

TABELA 3.26 - EVOLUÇÃO DA ÁREA IRRIGADA IMPLANTADA POR ESTADO

EM HECTARE

ESTADO		ÁREA IRR	IGADA	
	1985	1987	1989	1991
MARANHÃO	11.450	17.375	24.685	26.748
PIAUÍ	26.822	35.200	45.086	46.406
CEARÁ	39.412	72.149	87.004	88.961
RIO GRANDE DO NORTE	10.538	21.292	27.381	28.589
PARAÍBA	22.933	27.703	29.757	30.735
PERNAMBUCO	41.449	82.538	68.477	71.953
ALAGOAS	4.398	8.496	12.560	13.290
SERGIPE	10.469	15.069	15.563	16.284
BAHIA	68.615	112.818	126.918	129.454
NORDESTE	236.086	372.640	437.431	452.420

FONTE: SECRETARIA NACIONAL DE IRRIGAÇÃO, INCLUINDO ÁREAS DO PROVÁRZEAS/PROFIR, DNOCS, DNOS, CODEVASF, LINHAS DE CRÉDITO E D.L. 2.032

3.3.1 - Irrigação na Bacia do São Francisco

Tendo em vista ser a Bacia do São Francisco a principal área de irrigação da Região Nordeste, foi preparada uma síntese dos estudos existentes sobre a irrigação na bacia.

O Vale do São Francisco abrange parcialmente Minas Gerais, Bahia, Pernambuco, Sergipe, Alagoas, Goiás e Distrito Federal.

O Plano Diretor para o Desenvolvimento do Vale do São Francisco - PLANVASF informa haver uma superfície total pedologicamente irrigável da ordem de 30,8 milhões de ha, dispersa em 17 "Áreas Prioritárias" concebidas no PLANVASF. Considerando fatores restritivos (distância à fonte hídrica maior que 60 km e altura de bombeamento acima da faixa de 80 a 120 m), a superfície irrigável passa para 8,1 milhões de ha, superfície esta que não poderá ser irrigável, por falta de água para tanto. A CODEVASF estima que, considerando o uso múltiplo dos cursos de água da bacia, talvez possam ser irrigados cerca de 1,5 milhões de ha. Essa avaliação, se for implantado o Projeto da Transposição de Águas do São Francisco para os Estados do Ceará, Paraíba e Rio Grande do Norte terá, com certeza, de ser revista.

A região de planejamento do PLANVASF abrange 421 municípios, pertencentes aos Estados de Minas Gerais, Bahia, Pernambuco, Alagoas e Sergipe, com uma área total de 691.075 km2, dos quais 120.701 (58%) estão incluídos no Polígono das Secas. A área do PLANVASF não coincide exatamente com a bacia hidrográfica do Rio São Francisco (640.000 km2), já que exclui a pequena parte da bacia situada no Estado de Goiás e no Distrito Federal e inclui aqueles municípios dos restantes cinco Estados que têm somente parte de sua área dentro dos limites físicos da bacia.

Segundo o PLANVASF, a área irrigada na Bacia do São Francisco em 1988 é estimada em 209.400 ha, assim repartida pelas cinco áreas estaduais integradas:

Minas Gerais	62.100 ha
Bahia	71.000 ha
Pernambuco	57.200 ha
Alagoas	6.400 ha
Sergipe	12.700 ha

Naquele ano, os projetos públicos implantados na Bacia somavam 67.921 ha, tendo a CODEVASF implantado 61.115 hectares, o DNOCS 5.446 ha e os Estados 1.360 ha.

A demanda unitária de água foi estimada pelo Plano Diretor para o Desenvolvimento do Vale do São Francisco - PLANVASF em 20.750 m3/ha/ ano, o que resulta numa demanda total de 4,3 bilhões de m3/ano. O PLANVASF admitiu que cerca de 30% deste volume volte à calha do rio, por drenagem dos terrenos irrigados. A água efetivamente consumida será então de cerca de 3,0 bilhões de m3/ano, que representa apenas 3,2% da vazão anual do Rio São Francisco em Traipú (94 bilhões de m3/ano).

As perdas por evaporação nos reservatórios de Três Marias e Sobradinho são, segundo cálculos do DNAEE e do DNOS, 30 m3/s e 190 m3/s, respectivamente, ou 6,9 bilhões de m3/ano, no total. A atual área irrigada consome, portanto menos do que estas perdas e os gastos anuais correspondem a 5,6% do armazenamento naqueles reservatórios (19,3 bilhões de m3 em Três Marias e 34 bilhões de m3 em Sobradinho.

O Programa de Irrigação do Nordeste - PROINE estabeleceu como meta a ser alcançada em 1990 a irrigação de 547.890 ha na bacia do São Francisco, meta essa que não foi atingida.

Por sua vez, o Programa de Irrigação proposto pelo PLANVASF, prevê a implantação até o ano 2000, de 170 projetos, com uma área total de 593.821 ha, repartida pelas cinco áreas estaduais integradas (TABELA 3.27).

Em todos os projetos do Programa, segundo o PLANVASF, há garantia de abastecimento de água suficiente, obtida de rios permanentes próximos, subsidiários do Rio São Francisco ou deste próprio.

RIDAS	
5	

	ÁREA	ÁREA	ÁREA
ESTADOS	PROJETOS PÚBLICOS	PROJETOS PRIVADOS	TOTAL
	(ha)	(ha)	(ha)
MINAS GERAIS	110.920	81.895	192.815
BAHIA	107.515	193.969	301.484
PERNAMBUCO	68.891	7.458	76.349
ALAGOAS	17.028	-	17.028
SERGIPE	5.909	236	6.145
TOTAL	310.263	283.558	593.821

O Programa contém projetos públicos e projetos privados, designandose por públicos aqueles que presumivelmente, segundo as informações de que atualmente se dispõe, serão implantados por órgãos públicos e distribuídas, posteriormente, as terras para os irrigantes; e por privados, os que serão implantados por iniciativa privada, ainda que com acesso ao crédito e tendo, eventualmente, alguns subsídios.

Os Projetos foram escolhidos em uma lista de projetos, com as mais diversas origens, que soma 1.336.000 ha.

O Programa foi previsto para ser implantado de 1989 a 2000, e segundo o PLANVASF, não oferece perigo de incompatibilidade com o setor de geração de energia elétrica.

O Programa, visa ordenar o processo de implantação da irrigação no Vale do São Francisco, estabelecendo prioridades a nível de áreas-programa e prevendo a participação de cada estado no total geral da área irrigada que se julga viável implantar, com os recursos operacionais e financeiros de que se virá a dispor e tendo presente a compatibilização com outros usos dos recursos hídricos.

Admitindo uma demanda unitária de 20.750 m3/ha/ano, a demanda total de água requerida, abrangendo as áreas atualmente irrigadas e as projetadas, num total de 803.221 ha, será de 16,7 bilhões de m3/ano. Admitindo também que 30% desse volume volta ao rio, por drenagem dos terrenos irrigados, o consumo efetivo será cerca de 11,7 bilhões de m3/ano, que corresponde a cerca de 12,5% da vazão anual do Rio São Francisco em Traipú.

As águas subterrâneas da Bacia do Rio São Francisco ocupam diferentes tipos de reservatórios, desde as zonas fraturadas do substrato geológico pré-cambriano até depósitos quaternários recentes, tendo sido identificados nove províncias ou domínios hidrogeológicos pelo PLANVASF.

A soma das áreas potencialmente irrigáveis pelos aquiferos das nove províncias hidrogeológicas identificadas, atinge 926.000 ha.

Os aqüíferos que mais contribuem para a superfície total são os altiplanos do São Francisco (580 mil ha ou 62,6% do total) e as dos aluviões (160 mil ha ou 17,3% do total), seguindo-se das zonas cársticas com 78 mil ha 3 8,4% do total.

O PLANVASF considerou entretanto, que o potencial de 926.000 ha é muito difícil de ser atingido, principalmente porque:

. a superfície irrigável por um poço é relativamente pequena. Freqüentemente não atingirá 1 ha e dificilmente ultrapassará 5 ha. Po-

ços que irriguem 20 ha são exceção (que poderá ter muito interesse econômico aproveitar). Isso significa que é uma atividade que não interessará, em geral, aos grandes agricultores;

- . os investimentos por hectare para abrir e explorar um poço tubular profundo são grandes, só se justificando para produtos agrícolas de alta rentabilidade e exigência em mão-de-obra, portanto mais próprios para pequenos agricultores. Mas os altos investimentos dificultam a participação de pequenos irrigantes;
- . os investimentos são menores em aluviões, por os poços serem menos profundos. Mas como estes aqüíferos marginam os rios é, em geral, mais econômico bombear do próprio rio;
- . com freqüência a qualidade da água dos aquiferos impõe muitas restrições para uso em irrigação;
- .muitas vezes os solos onde há poços com potencial para irrigação não apresentam aptidão para tal.

Assim, segundo o PLANVASF, as águas subterrâneas da Bacia do São Francisco constituem uma grande potencialidade para irrigação, mas dado seu elevado custo de captação e utilização, não se pode, agora, tomar como base para um grande programa de irrigação.

3.3.2 - Evolução da Demanda para irrigação

Com base nos dados sobre a área irrigada dos Estados e das unidades de planejamento, foram então estimadas as demandas de água para irrigação.

Para estimativa da demanda de água para irrigação considerou-se uma dotação média de 18.000 m3/ha/ano. Nos estudos, foi considerado que cerca de 30% deste volume volte à calha do rio, por drenagem dos terrenos irrigados.

Com base na estimativa da evolução da área irrigada preparada, como já mencionado, pelo Grupo de Ordenamento do Espaço Regional e Agricultura do Projeto Áridas, a área irrigada do Nordeste da SUDENE atingirá 1.151.631 ha no ano 2020, representando um aumento de cerca de 134 % com relação a área irrigada de 1991.

Na TABELA 3.28, estão apresentados os dados da evolução da área irrigada, por Estado, até o ano 2020.

TABELA 3.28 - PROJEÇÃO DA ÁREA IRRIGADA DOS ESTADOS NORDESTINOS ATÉ O ANO 2020

		_	\sim	_ ^		_
ΕN	_	_			$\mathbf{-}$	_
			()	┍	\mathbf{r}	

ESTADO	ÁRI	ÁREA IRRIGADA		
	2000	2010	2020	
MARANHÃO	46.248	61.057	75.867	
PIAUÍ	35.074	49.420	63.766	
CEARÁ	78.419	85.829	93.239	
RIO GRANDE DO NORTE	24.101	28.443	32.785	
PARAÍBA	21.325	22.945	24.565	
PERNAMBUCO	138.707	175.541	212.375	
ALAGOAS	33.901	51.545	69.189	
SERGIPE	18.995	26.911	34.827	
BAHIA	216.410	289.314	362.218	
MINAS GERAIS (*)	86.895	134.780	182.800	
NORDESTE	700.075	925.785	1.151.631	

FONTE: PROJEÇÕES DO GT - ORGANIZAÇÃO DO ESPAÇO REGIONAL E AGRICULTURA DO PROJETO ÁRIDAS. NOTA: (*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

A TABELA 3.29, preparada com base nas estimativas do Grupo de Ordenamento do Espaço Regional e Agricultura do Projeto Áridas, mostra a área irrigada das unidades de planejamento até o ano 2020.

Nas TABELAS 3.30 e 3.31, estão mostradas as demandas de água para irrigação para os Estados e unidades de planejamento, respectivamente, até o ano 2020.

3.4 - Demanda industrial

Os esforços de industrialização do Nordeste geraram os "Distritos Industriais" onde se localizam a grande maioria das industrias modernas da Região.

Os distritos industriais localizam-se em áreas urbanas situadas na periferia das cidades. Os seus sistemas de abastecimento de água todavia são, via de regra, independentes dos sistemas das cidades o que justifica uma

TABELA 3.29 - PROJEÇÃO DA ÁREA IRRIGADA POR UNIDADE DE PLANEJAMENTO ATÉ O ANO 2020

EM HECTARE

UP	UNIDADE DE PLANEJAMENTO)	ÁREA IR	RIGADA	
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	2.738	3.847	5.079	6.311
)2	GURUPÍ	219	308	407	506
03	MEARIM-GRAJAÚ-PINDARÉ	6.250	8.781	11.592	14.404
04	ITAPECURU	2.530	3.554	4.692	5.831
)5	MUNIM-BARREIRINHAS	986	1.385	1.829	2.272
06	PARNAÍBA	45.689	67.086	90.861	114.636
07	ACARAÚ-COREAÚ	5.117	5.593	6.121	6.650
30	CURU	11.643	12.726	13.928	15.130
09	FORTALEZA	8.856	9.679	10.593	11.508
10	JAGUARIBE	42.804	46.782	51.203	55.624
11	APODI-MOSSORÓ	4.440	5.299	6.254	7.209
12	PIRANHAS-AÇU	15.964	18.004	20.271	22.538
13	LESTE POTIGUAR	8.772	10.440	12.293	14.146
14	ORIENTAL DA PARAÍBA	10.883	11.682	12.570	13.457
15	ORIENTAL DE PERNAMBUCO	51.743	67.994	86.049	104.105
16	BACIAS ALAGOANAS	17.819	32.050	47.861	63.672
17	SÃO FRANCISCO	176.178	280.550	391.021	501.627
18	VAZA-BARRIS	2.753	4.335	6.092	7.849
19	ITAPICURU-REAL	5.111	7.384	9.910	12.436
20	PARAGUAÇU-SALVADOR	18.309	26.275	35.127	43.978
21	CONTAS-JEQUIÉ	36.594	52.517	70.209	87.901
22	PARDO-CACHOEIRA	3.422	4.912	6.566	8.221
23	JEQUITINHONHA	104	149	199	249
24	EXTREMO SUL DA BAHIA	13.060	18.743	25.057	31.372
T	OTAL	491.987	700.075	925.785	1.151.63

FONTE: ELABORADO COM BASE NAS PROJEÇÕES DO GT - ORGANIZAÇÃO DO ESPAÇO REGIONAL E AGRICULTURA DO PROJETO ÁRIDAS. NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

consideração independente. Algumas indústrias chegam a ter sistemas independentes ou particulares de captação e tratamento de água.

O PLIRHINE observou que a evolução das demandas para os abastecimentos domésticos e distritos industriais apresentam ritmo de crescimento semelhantes. Da análise dos dados do PLIRHINE, observou-se que a de-

TABELA 3.30 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA IRRIGAÇÃO DOSESTADOS NORDESTINOS ATÉ O ANO 2020

EM	ΗМ	3/	ano
----	----	----	-----

ESTADO	DEMANDA PARA IRRIGAÇÃO				
	1991	2000	2010	2020	
MARANHÃO	414,792	582,725	769,318	955,924	
PIAUÍ	279,254	441,932	622,692	803,452	
CEARÁ	904,050	988,079	1.081,445	1.174,811	
RIO GRANDE DO NORTE	254,432	303,673	358,382	413,091	
PARAÍBA	250,324	268,695	289,107	309,519	
PERNAMBUCO	1.330,006	1.747,708	2.211,817	2.675,925	
ALAGOAS	227,065	427,153	649,467	871,781	
SERGIPE	149,575	239,337	339,079	438,820	
BAHIA	1.900,030	2.726,766	3.645,356	4.563,947	
MINAS GERAIS (*)	489,510	1.094,877	1.698,228	2.303,280	
NORDESTE	6.199,036	8.820,945	11.664,890	14.510,550	

NOTA: (*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

manda para o abastecimento dos distritos industriais equivaliam a cerca de 25% da demanda para o abastecimento urbano.

Assim, nesse estudo considerou-se a demanda para o abastecimento dos distritos industriais como sendo equivalentes a 25% da demanda para o abastecimento urbano.

3.4.1- Evolução das demandas de água para industria

Na estimativa do crescimento da demanda de água para o abastecimento dos distritos industriais, considerou-se que o mesmo acompanharia o nível de crescimento da demanda para o abastecimento urbano, eqüivalendo a demanda para o abastecimento dos distritos industriais a sempre 25% da demanda para o abastecimento urbano.

Os resultados são apresentados nas TABELAS 3.32 e 3.33, a seguir, para a demanda dos distritos industriais por Estado e por unidade de planejamento, respectivamente.

TABELA 3.31 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA IRRIGAÇÃO DAS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/AN

UP	UNIDADE DE PLANEJAMENTO	DEM	ANDA PARA	(IRRIGAÇÃ)
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	35,504	48,473	63,995	79,518
02	GURUPÍ	2,764	3,884	5,127	6,371
03	MEARIM-GRAJAÚ-PINDARÉ	78,753	110,637	146,064	181,493
04	ITAPECURU	31,878	44,784	59,124	73,465
05	MUNIM-BARREIRINHAS	12,423	17,452	23,041	28,630
06	PARNAÍBA	576,678	845,281	1.144,846	1.444,419
07	ACARAÚ-COREAÚ	64,478	70,471	77,130	83,789
08	CURU	146,706	160,342	175,493	190,644
09	FORTALEZA	111,583	121,954	133,478	145,001
10	JAGUARIBE	539,329	589,459	645,158	700,857
11	APODI-MOSSORÓ	55,945	66,772	78,801	90,831
12	PIRANHAS-AÇU	201,148	226,856	255,419	283,982
13	LESTE POTIGUAR	110,533	131,546	154,892	178,239
14	ORIENTAL DA PARAÍBA	137,131	147,194	158,376	169,558
15	ORIENTAL DE PERNAMBUCO	651,963	856,719	1.084,223	1.311,727
16	BACIAS ALAGOANAS	224,523	403,825	603,044	802,263
17	SÃO FRANCISCO	2.219,844	3.534,934	4.926,863	6.320,494
18	VAZA-BARRIS	34,689	54,616	76,759	98,901
19	ITAPICURU-REAL	64,398	93,040	124,866	156,691
20	PARAGUAÇU-SALVADOR	230,689	331,065	442,594	554,123
21	CONTAS-JEQUIÉ	461,086	661,713	884,630	1.107,548
22	PARDO-CACHOEIRA	43,123	61,887	82,735	103,583
23	JEQUITINHONHA	1,308	1,877	2,510	3,142
24	EXTREMO SUL DA BAHIA	164,561	236,164	315,723	395,282
то	TAL	6.199,038	8.820,945	11.664,891	14.510,551

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

3.5 - Demanda das agroindústrias

As agroindústrias enquadram-se na categoria de demandas, convencionadas como demanda rural concentrada, destacam-se no Nordeste não como grandes consumidoras de água, mas sobre tudo pelos efeitos dos seus efluentes nos corpos de água receptores (poluição).

Como não se dispõe de informações mais atualizadas sobre as deman-

TABELA 3.32 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA O ABASTECIMENTO DOS DISTRITOS INDUSTRIAIS ATÉ O ANO 2020 DOS ESTADOS DO NORDESTE

EM HM3/ANO

ESTADO	DEMANDA DISTRITOS INDUSTRIAIS					
	1991	2000	2010	2020		
MARANHÃO	45,799	57,160	66,650	73,982		
PIAUÍ	39,817	56,199	66,709	75,219		
CEARÁ	130,006	164,308	193,829	220,471		
RIO GRANDE DO NORTE	47,639	60,839	72,537	81,286		
PARAÍBA	49,242	64,301	77,083	88,107		
PERNAMBUCO	148,441	188,991	222,355	249,550		
ALAGOAS	43,805	59,245	68,469	75,287		
SERGIPE	24,400	33,733	39,596	43,992		
BAHIA	200,120	270,416	319,574	354,691		
MINAS GERAIS (*)	17,761	25,254	30,755	34,821		
NORDESTE	747,027	980,445	1.157,557	1.297,405		

NOTA:(*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

das de água para o abastecimento das agroindústrias, utilizou-se as informações do "Estudo de Demanda" do PLIRHINE.

Nos estudos do PLIRHINE, foram em número de 10 os tipos de agroindústrias consideradas:

- usina de açúcar;
- destilarias de álcool;
- óleos vegetais;
- laticínios:
- frigoríficos e matadouros;
- fecularias;
- curtumes;
- sucos e conservas vegetais;
- bebidas; e
- têxteis.

As demandas das agroindústrias foram calculadas através de utilização de coeficientes de demanda que relacionassem as produções de cada tipologia com demandas de água.

Como o PLIRHINE superestimou a evolução das áreas irrigadas, que abasteceriam as agroindustrias, no presente estudo, considerou-se que as

TABELA 3.33 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA O ABASTECIMENTO DOS DISTRITOS INDUSTRIAIS PARA ASUNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/ANO

UP	UNIDADES DE PLANEJAMENTO	DEMAN	NDA DISTRI	TOS INDUS	TRIAIS
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	7,338	8,734	9,952	10,944
02	GURUPÍ (*)	3,948	5,087	6,018	6,718
03	MEARIM-GRAJAÚ-PINDARÉ	20,223	25,669	30,165	33,588
04	ITAPECURU	7,103	8,809	10,240	11,353
05	MUNIM-BARREIRINHAS	2,260	2,980	3,561	3,991
06	PARNAÍBA	47,797	66,834	79,670	90,202
07	ACARAÚ-COREAÚ	9,267	13,352	16,929	20,155
08	CURU	3,951	5,582	7,008	8,294
09	FORTALEZA	91,012	108,183	122,704	135,821
10	JAGUARIBE	22,723	32,439	40,941	48,607
11	APODI-MOSSORÓ	8,740	11,265	13,506	15,184
12	PIRANHAS-AÇU	13,582	18,742	23,218	26,932
13	LESTE POTIGUAR	35,455	45,416	54,219	60,879
14	ORIENTAL DA PARAÍBA	39,104	49,717	58,678	66,398
15	ORIENTAL DE PERNAMBUCO	128,599	159,915	185,507	206,288
16	BACIAS ALAGOANAS	38,458	51,255	59,332	65,436
17	SÃO FRANCISCO (*)	73,593	106,492	130,239	148,071
18	VAZA-BARRIS	19,317	25,786	29,819	32,802
19	ITAPICURU-REAL	10,611	17,312	21,849	25,141
20	PARAGUAÇU-SALVADOR	118,486	153,609	178,250	195,916
21	CONTAS-JEQUIÉ	13,218	19,781	24,346	27,589
22	PARDO-CACHOEIRA	23,212	30,979	36,438	40,354
23	JEQUITINHONHA (*)	2,159	3,210	3,974	4,535
24	EXTREMO SUL DA BAHIA	6,874	9,301	10,998	12,210
Т	OTAL	747,027	980,445	1.157,557	1.297,405

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

projeções do PLIRHINE para as demandas agroindustriais relativas ao ano 2000, somente seriam atingidas no ano 2020.

Para os Estados da Região, os resultados são apresentados na TABE-LA 3.34, a seguir.

Para as unidades de planejamento, os resultados são apresentados na TABELA 3.35, adiante.

TABELA 3.34 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA O ABASTECIMENTO DAS AGROINDÚSTRIAS ATÉ O ANO 2020 DOS ESTADOS DO NORDESTE

	Н			

ESTADO	DEMANDA DAS AGROINDÚSTRIAS				
	1990	2000	2 2010	2020	
MARANHÃO	13,142	15,577	18,013	20,448	
PIAUÍ	5,620	6,855	8,089	9,324	
CEARÁ	91,909	99,007	106,105	113,203	
RIO GRANDE DO NORTE	45,632	49,340	53,048	56,756	
PARAÍBA	55,649	59,062	62,475	65,888	
PERNAMBUCO	547,714	572,197	569,710	621,224	
ALAGOAS	410,030	425,866	441,703	457,539	
SERGIPE	36,281	38,874	41,468	44,061	
BAHIA	59,608	72,307	85,007	97,706	
MINAS GERAIS (*)	7,326	10,481	13,635	16,790	
NORDESTE	1.272,880	1.349,566	1.426,253	1.502,939	

NOTA:(*) - REGIÃO DO NORTE DE MINAS, INCLUÍDA NO NORDESTE DA SUDENE

3.6 - Demanda para usos não consuntivos

As demandas não consuntivas são ligadas às modalidades do tipo "in stream use".

Os referidos usos englobam dentre outros, principalmente:

- geração hidroelétrica;
- navegação interior;
- pesca; e
- recreação e turismo.

As demandas para estes usos, embora não consuntivos podem apresentar restrições ou competições com os demais usos propiciando o surgimento de conflitos.

3.6.1 - Geração hidroelétrica

A utilização da água para geração de energia elétrica é um uso não consuntivo dos recursos hídricos, embora provoque perdas por evaporação nos reservatórios, que são consideradas no estudo da disponibilidade hídrica.

TABELA 3.35 - PROJEÇÃO DA DEMANDA DE ÁGUA PARA O ABASTECIMENTO DAS AGROINDÚSTRIAS PARA AS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/ANO

UP UNIDADES DE PLANEJAMENTO	O DEMANDA DAS AGROINDÚSTRIAS			
	1990	2000	2010	2020
01 TOCANTINS MARANHENSE	0,340	0,535	0,729	0,924
02 GURUPÍ (*)	0,000	0,000	0,000	0,000
03 MEARIM-GRAJAÚ-PINDARÉ	2,222	3,384	4,546	5,708
04 ITAPECURU	4,827	5,699	6,571	7,443
05 MUNIM-BARREIRINHAS	0,000	0,000	0,000	0,000
06 PARNAÍBA	34,691	36,966	39,240	41,515
07 ACARAÚ-COREAÚ	2,766	3,436	4,106	4,776
08 CURU	13,983	14,626	15,268	15,911
09 FORTALEZA	25,666	28,322	30,978	33,634
10 JAGUARIBE	26,165	28,461	30,756	33,052
11 APODI-MOSSORÓ	0,140	0,140	0,140	0,140
12 PIRANHAS-AÇU	0,531	0,702	0,872	1,043
13 LESTE POTIGUAR	45,538	49,251	52,963	56,676
14 ORIENTAL DA PARAÍBA	54,831	57,910	60,989	64,068
15 ORIENTAL DE PERNAMBUCO	549,420	573,206	596,993	620,744
16 BACIAS ALAGOANAS	379,577	394,203	408,828	423,454
17 SÃO FRANCISCO (*)	47,054	57,957	68,859	79,762
18 VAZA-BARRIS	33,271	34,969	36,668	38,366
19 ITAPICURU-REAL	3,830	5,240	6,651	8,061
20 PARAGUAÇU-SALVADOR	39,882	43,846	47,809	51,773
21 CONTAS-JEQUIÉ	2,981	3,747	4,512	5,278
22 PARDO-CACHOEIRA	4,000	5,258	6,517	7,775
23 JEQUITINHONHA (*)	0,000	0,000	0,000	0,000
24 EXTREMO SUL DA BAHIA	1,165	1,710	2,256	2,801
TOTAL	1.272,880	1.349,568	1.426,251	1.502,93

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE

As perdas por evaporação nos reservatórios de Três Marias e Sobradinho são segundo o PLANVASF, 30 m3/s e 190 m3/s, respectivamente, ou 6,9 bilhões de m3/ano.

Segundo dados da CHESF, cada 1 m3/s retirado do Rio São Francisco, eqüivale a uma perda de geração de 2,52 MW.ano.

A geração hidráulica de energia atua sobre a capacidade de

armazenamento disponível, exigindo que um certo volume seja reservado para esse fim, muito embora ele seja reposto no rio mais a jusante.

No caso de usinas que trabalham na ponta há que considerar também a alteração que acarretam no padrão de variabilidade do escoamento a jusante.

Atualmente, o sistema elétrico da Região Nordeste está ligado ao da Região Norte, a partir de Tucurui.

Segundo informações do BNB (BNB, 1994), tem-se que:

- O consumo "per capita" de energia no Nordeste é o menor das regiões brasileiras, correspondendo à metade da média nacional e a um terço do consumo da Região Sudeste.
- Uma grande parte da população rural Nordestina ainda depende da lenha como principal fonte energética. Este fato unido ao uso da lenha com fins energéticos em algumas indústrias (aço e cerâmica) e pequenos negócios (olarias e padarias), representa um fator de deterioração da vegetação natural da Região.
- A capacidade instalada do Nordeste é de 7.200 MW, que será adicionada em 3.000 MW com a entrada em operação de Xingó.
- A capacidade hidroenergética instalada no Nordeste corresponde, hoje, a 75% do total do potencial hidroelétrico.

Os estudos da CHESF, com base em projeções do crescimento da demanda, indicam que com a implantação de Xingo, o Nordeste tem energia garantida apenas até o ano 2002.

3.6.2 - Navegação interior

A navegação fluvial constitui um uso não consuntivo, mas a necessidade de manter vazões mínimas para esse propósito constitui uma restrição ao emprego desse recurso hídrico para outros usos consuntivos.

De maneira geral, as principais exigências para que um rio seja navegável são: vazão mínima e declividade baixa.

Cada rio ou trecho de rio exige um estudo para a determinação da vazão mínima abaixo da qual não seja possível a navegabilidade em corrente livre. Caso se canalize um rio, desaparecem as limitações de vazão e declividade exigidas pela navegação em corrente livre.

Caso seja construída uma barragem ao longo de um rio, para garantir a navegação, é necessário também a construção de uma eclusa.

No Nordeste, sob o aspecto da navegabilidade destacam-se, os sequintes rios: Mearim e seus afluentes Pindaré e Grajau, Itapecuru, Parnaíba e seu afluente Balsas, São Francisco e Tocantins.

3.6.3 - Pesca

A pesca realizada em águas interiores (rios, lagos e acudes) não constitui um uso consuntivo dos recursos hídricos, mas implica numa restrição aos outros usos já que exige a manutenção de uma certa vazão ou volume de água com determinados padrões de qualidade que permitam a sobrevivência das espécies.

No presente estudo, se estabeleceu uma demanda mínima, chamada demanda ecológica, para cada unidade de planejamento, visando a manutenção da vida aquática.

3.6.4 - Recreação e turismo

As atividades de recreação e turismo, no que diz respeito aos recursos hídricos se traduzirão especialmente na utilização de espelhos líquidos de lagos, reservatórios e mais raramente calhas dos rios, para o desenvolvimento das seguintes atividades principais:

- natação e esportes náuticos;
- vela;
- pesca e caça;
- balneário; e
- paisagismo.

Na região semi-árida Nordestina, um espelho d'água representa um ponto de atração, possibilitando excelentes condições de lazer.

Esta modalidade de uso não tem expressão como demanda de água em termos quantitativos, exigindo todavia, padrões estéticos e sanitários adequados.

3.6.5 - Demanda ecológica

Por demanda ecológica entende-se a quantidade de água mínima necessária para a manutenção da vida aquática nos rios.

No presente estudo, considerou-se que a demanda ecológica equivaleria a 10% da disponibilidade de água da unidade de planejamento.

Para as unidades de planejamento, os resultados são apresentados na TABELA 3.36, a seguir.

TABELA 3.36 - PROJEÇÃO DA DEMANDA ECOLÓGICA
PARA AS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

F	N/	ш	н	N.	13	/Δ	N	0
_	ıv		_	ıν	1.)	$^{\prime}$	W N	•

					IIVIO//IIVO
UP	UNIDADES DE PLANEJAMENT	го р	EMANDA EC	COLÓGICA	
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	50,000	50,000	50,000	50,000
02	GURUPÍ (*)	251,000	251,000	251,000	251,000
03	MEARIM-GRAJAÚ-PINDARÉ	343,000	343,000	343,000	343,000
04	ITAPECURU	155,000	155,000	155,000	155,000
05	MUNIM-BARREIRINHAS	176,000	176,000	176,000	176,000
06	PARNAÍBA	808,704	808,704	808,704	808,704
07	ACARAÚ-COREAÚ	57,969	74,657	83,000	91,344
80	CURU	36,913	39,980	41,514	43,048
09	FORTALEZA	22,190	25,110	26,570	28,030
10	JAGUARIBE	193,706	337,226	337,226	337,226
11	APODI-MOSSORÓ	16,440	37,990	37,990	37,990
12	PIRANHAS-AÇU	152,553	193,390	193,390	193,390
13	LESTE POTIGUAR	11,456	11,456	11,456	11,456
14	ORIENTAL DA PARAÍBA	26,190	36,330	41,400	46,470
15	ORIENTAL DE PERNAMBUCO	15,093	22,463	26,148	29,833
16	BACIAS ALAGOANAS	0,792	0,792	0,792	0,792
17	SÃO FRANCISCO (*)	6.438,528	6.438,528	6.438,528	6.438,52
18	VAZA-BARRIS	7,561	7,561	7,561	7,561
19	ITAPICURU-REAL	16,344	16,344	16,344	16,344
20	PARAGUAÇU-SALVADOR	170,000	170,000	170,000	170,000
21	CONTAS-JEQUIÉ	70,000	70,000	70,000	70,000
22	PARDO-CACHOEIRA	79,500	79,500	79,500	79,500
23	JEQUITINHONHA (*)	54,000	54,000	54,000	54,000
24	EXTREMO SUL DA BAHIA	140,000	140,000	140,000	140,000
Т	OTAL	9.292,938	9.539,031	9.559,123	9.579,210

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE.

3.7 - Demanda total

Na TABELA 3.37, estão apresentados os dados da evolução da demanda total para as unidades de planejamento até o ano 2020.

TABELA 3.37 - PROJEÇÃO DA DEMANDA TOTAL PARA AS UNIDADES DE PLANEJAMENTO ATÉ O ANO 2020

EM HM3/ANO

UP	UNIDADES DE PLANEJAME	NTO	DEMAND	A TOTAL	
		1991	2000	2010	2020
01	TOCANTINS MARANHENSE	138,073	159,516	181,680	202,742
02	GURUPÍ (*)	299,350	306,789	313,435	318,979
03	MEARIM-GRAJAÚ-PINDARÉ	607,705	670,384	732,316	789,074
04	ITAPECURU	254,515	277,544	300,774	322,472
05	MUNIM-BARREIRINHAS	215,784	224,889	233,954	242,300
06	PARNAÍBA	1.823,634	2.189,885	2.555,090	2.908,887
07	ACARAÚ-COREAÚ	207,291	249,966	282,416	313,222
80	CURU	224,246	253,303	277,309	300,664
09	FORTALEZA	629,798	730,988	818,615	899,283
10	JAGUARIBE	956,690	1.198,803	1.296,871	1.391,018
11	APODI-MOSSORÓ	134,701	179,528	202,570	222,815
12	PIRANHAS-AÇU	461,788	553,016	602,844	649,007
13	LESTE POTIGUAR	373,919	447,687	517,981	577,630
14	ORIENTAL DA PARAÍBA	455,345	530,002	592,480	648,943
15	ORIENTAL PERNAMBUCO	1.908,831	2.298,501	2.678,633	3.035,012
16	BACIAS ALAGOANAS	829,790	1.087,588	1.341,738	1.586,074
17	SÃO FRANCISCO (*)	9.403,440	10.892,008	12.411,696	13.903,767
18	VAZA-BARRIS	195,284	249,053	292,846	331,406
19	ITAPICURU-REAL	222,663	286,114	341,934	391,552
20	PARAGUAÇU-SALVADOR	1.133,688	1.413,948	1.652,988	1.857,161
21	CONTAS-JEQUIÉ	661,224	895,626	1.142,357	1.382,483
22	PARDO-CACHOEIRA	282,495	341,413	390,882	432,640
23	JEQUITINHONHA (*)	81,997	87,767	92,161	95,545
24	EXTREMO SUL DA BAHIA	366,664	450,993	539,636	625,854
TOT	TAL	21.872,914	25.975,308	29.793,203	33.428,527

NOTA: (*) - PARCELA DA BACIA DENTRO DO NORDESTE DA SUDENE

4 - INDICADORES DE SUSTENTABILIDADE DOS RECURSOS HÍDRICOS

A sustentabilidade do semi-árido Nordestino, no que tange aos recursos hídricos, está diretamente associada à limitada disponibilidade desses recursos, em termos de quantidade e qualidade, e à capacidade de suporte que pode oferecer às atividades humanas, em geral.

A sustentabilidade de um sistema se evidencia através da análise da evolução das mudanças, ao longo do tempo, de um conjunto de indicadores individuais.

O conjunto de indicadores deve ser robusto, embora não exaustivo, Müller (1993). Robusto, no sentido de que os mesmos traduzam as condições por ele descritas e, ademais, que sejam sensíveis, com base estatística ou de medição suficiente. Não deve ser exaustivo, se não somente referir-se às categorias e elementos mais significativos do sistema em análise.

Os indicadores da sustentabilidade, no tocante aos recursos hídricos, estão ligados à quantidade, qualidade, confiabilidade e acessibilidade do elemento água.

O desenvolvimento sustentável requer que o "stock" de capital, que passa de uma geração a outra, se mantenha ou melhore.

Dentre os confrontos mais importantes, no estudo do Balanço dos Recursos Hídricos, se destaca aquele que se estabelece entre as potencialidades da oferta dos recursos hídricos e as respectivas demandas. Tal confronto oferece uma primeira idéia da carência ou da abundância desses recursos. Em decorrência, fornece uma primeira visão sobre quais providências poderão ser tomadas para alcançar, em primeira aproximação, o equilíbrio amplo, pois aí se consideram, essencialmente, os usos consuntivos.

As variáveis utilizadas nos cálculos dos indicadores são:

- Qp Potencial hídrico da unidade de planejamento. Representa a quantificação dos recursos hídricos sem a intervenção humana, ou seja, em seu estado natural. O potencial de uma bacia ou de um conjunto de bacias é constituído pela soma dos escoamentos, de superfície e de base, sendo representado pelo escoamento médio anual.
- Qo Disponibilidade hídrica da unidade de planejamento, que é a parcela da potencialidade ativada pela ação do homem, por meio de barragens e poços. De uma maneira geral, as disponibilidades hídricas compreendem as parcelas dos recursos de água que podem ser prontamente aproveitadas e, portanto, disponíveis para diversos fins. O PLIRHINE, considerou como disponibilidade máxima factível a que corresponde ao nível de ativação de 80% da disponibilidade potencial. As disponibilidades hídricas superficiais de uma bacia hidrográfica nordestina são aqui representadas pelas parcelas das águas represadas nos açudes, possíveis de serem aproveitadas através de regularização ou retiradas. Para um reservatório, a disponibilidade é função da sua capacidade de acumulação e do nível de garantia adotado que, a rigor, depende do uso e do risco de falha socialmente aceito. A quantificação total das disponi-

bilidades hídricas subterrâneas concentra-se no componente disponibilidades hídricas atuais, que é dado pela vazão total e anual de todos os poços de cada sistema de aqüíferos em efetiva exploração.

• Qd - Demandas de água. Para efeito de planejamento dos recursos hídricos entendem-se por demandas as quantidades de água, medidas em unidades de volume, que devem satisfazer a determinados usuários, sejam eles consuntivos ou não.

Os indicadores de sustentabilidade dos recursos hídricos, considerados no presente estudo, são:

- a) Qo / Qp Índice de ativação da potencialidade (IAP). Representa o grau de ativação dos recursos hídricos da unidade de planejamento (constituída por uma ou mais bacias). Varia entre 0 e 1. Quanto mais próximo de um, mais ativados foram os recursos potenciais da unidade de planejamento.
- b) Qd / Qo Índice de utilização da disponibilidade (IUD). Representa o grau de utilização da disponibilidade. Quando seu valor é menor que a unidade, significa dizer que a disponibilidade está sendo suficiente para satisfazer a demanda e, quando é maior que a unidade, significa que a disponibilidade não está sendo suficiente para atender a demanda, existindo uma demanda reprimida, o que implica na necessidade de construção de novos reservatórios ou na perfuração de mais poços.
- c) Qd / Qp Índice de utilização da potencialidade (IUP). Representa o grau de utilização do potencial. Quando mais próximo for seu valor de 0,8, mais próxima estará a unidade de planejamento de atingir o limite máximo possível da utilização do seu potencial.
- d) Qo Qd, que é usado para representar o Balanço tradicional entre a disponibilidade e a demanda. Quando seu valor é positivo, evidencia que as demandas estão sendo satisfeitas e, quando negativo, significa existir uma demanda insatisfeita, o que implica na necessidade de construção de novos reservatórios ou na da perfuração de mais poços.

A análise destes indicadores, correspondentes à situação atual e planejada, retratarão a situação dos recursos hídricos da unidade de planejamento. A análise da evolução destes indicadores, ao longo do tempo, é que retratarão a sustentabilidade dos recursos hídricos da unidade de planejamento.

Implicitamente, se considerou que as potencialidades dos recursos hídricos se manteriam constantes. Também, considerou-se que a disponibilidade decorrente da construção de reservatórios e a da perfuração de poços, não seria reduzida, seja por assoreamento ou pela degradação da qualidade

da água. Estas hipóteses foram revistas apenas quando se analisou a situação de mudança climática.

5 - ANÁLISE DA SUSTENTABILIDADE ATUAL

A tradicional realização de um balanço oferta x demanda, quando se utilizam valores médios para uma região como a nossa, tendo em vista os longos períodos de estiagem que, periodicamente, nela se estabelecem e inibem o desenvolvimento dos meios de produção, afetando, consequentemente, a qualidade de vida das populações que habitam no chamado "polígono das secas", pode levar a visões distorcidas da realidade vivida no semi-árido nordestino.

O regime hidrológico dos rios intermitentes da região é bastante crítico, pois depende de um regime pluviométrico irregular, tanto ao nível mensal quanto anual, da natureza geológica das rochas, na grande maioria, cristalina, e de um clima megatérmico de alto poder evaporante.

A integração dos fatores acima é diretamente responsável pelas características extremadas do escoamento, ora se evidenciando cheias de grandes proporções contrapondo-se a períodos de demorada escassez, resultando na inadequabilidade do balanço tradicional entre a oferta e a demanda, dos recursos hídricos, na região semi-árida Nordestina.

Além do mais, as disponibilidades hídricas se concentram nas margens dos açudes e dos rios perenes ou perenizados, fazendo com que as áreas mais afastadas das infra-estruturas hídricas, que representam a grande maioria da Região, não tenham acesso a água, não se tendo, por isso, uma avaliação confiável do conflito "oferta x demanda" nessas áreas.

Estas afirmativas podem ser facilmente comprovadas, quando analisamos o caso do Município de Orós, no Estado do Ceará. Neste Município foi construído, pelo Governo Federal, o Açude Orós, com 2,1 bilhões de metros cúbicos de capacidade. Entretanto, é comum em qualquer seca, a presença de carros-pipa e queda acentuada na produção agrícola do Município, poís, a influência de um açude ou de um rio perene ou perenizado só é sentida até uma distância de 10 km dos mesmos.

A sustentabilidade dos recursos hídricos do semi-árido Nordestino passa pela adoção de uma política para esses recursos que estabeleça níveis crescentes de proteção contra os efeitos das secas.

O abastecimento da população rural dispersa em toda a região, deve ser realizado, prioritariamente, através de poços, cacimbas e cisternas, como forma de garantir uma fonte de água permanente para o seu abastecimento, evitando com isso a freqüente utilização de carros-pipa para o abastecimento.

As aguadas, de regularização anual, são essenciais à distribuição geográfica da água, mas não oferecem nenhuma resistência às secas. São pontos de água para o gado, em anos de médios ou de pequenos defícits, que acontecem, segundo o PLIRHINE, em 80% do tempo. As aguadas são, portanto, importantes para dar sustentação à estrutura ocupacional, disseminada em todo espaço territorial da região.

O PLIRHINE fixou em 16 km2 a área de atendimento de cada uma das aguadas. Essa fixação decorreu do fato de considerar-se a distância de 4 km, como o máximo percurso, recomendável para o gado.

Os pequenos e médios açudes, de regularização internada, de menor densidade geográfica do que as aguadas, são calculados normalmente para enfrentar mais de um ano de estiagem, e são fundamentais à defesa contra as secas. Eles se destinam sobretudo ao abastecimento humano e agrícola, e são impotentes somente diante das secas prolongadas. Durante os últimos cem anos ocorrerem seis períodos nos quais as secas foram plurianuais (dois ou mais anos consecutivos de seca).

Finalmente, os grandes açudes, de regularização plurianual, projetados para enfrentar vários anos consecutivos de seca, garantiriam a proteção adequada para as secas excepcionais. Estes açudes são destinados para fins múltiplos (abastecimento de cidades, irrigação em larga escala, controle de cheias, recreação, turismo, entre outros usos). Os grandes açudes normalmente estão associados ao desenvolvimento global da bacia onde se situam. Exercem, assim, um papel preponderante no balanço oferta x demanda dos recursos hídricos de uma bacia.

Para garantir a proteção contra as secas excepcionais, que duram vários anos, entretanto, estes grandes açudes pagam um tributo altíssimo. Como eles têm que guadar água dos anos normais para enfrentar os anos de seca, precisam ser mantidos sempre cheios, o que faz com que a sua disponibilidade média anual, para atendimento das demandas, seja muito baixa, cerca de 20 a 30% da sua capacidade de acumulação. Decorre disso, que os grandes açudes perdem por evaporação, que na nossa região atinge mais de 2.000 mm/ano, a maioria de suas águas acumuladas.

A exigência de se manterem cheios, os grandes açudes, para se contar com reserva estratégica de água na região semi-árida do Nordeste, é mal compreendida pelo grande público, que vê no fato, um desperdício, dando a falsa impressão de que a região dispõe de muita água acumulada, e de que as mesmas são pouco exploradas.

O exemplo mais claro, de que dispomos sobre a importância da função dos grandes açudes como reserva hídrica estratégica, é o do abastecimento de água da cidade de Fortaleza. Em abril de 1993, com a confirma-

ção de que a estação chuvosa tinha terminado e com os dados técnicos, indicando que os açudes que suprem Fortaleza somente teriam condições de abastece-la até o mês de setembro, e assim mesmo, racionando em 50% o fornecimento de água à população, o Governo do Estado tomou a decisão de construir um canal de 115 km de extensão, em 90 dias, ligando os açudes, que abastecem Fortaleza, ao Rio Jaguaribe, perenizado pelas águas liberadas pelo açude Orós.

O DNOCS, de pronto, concordou em aumentar a liberação de água do Açude Orós, utilizando para isso, a reserva estratégica de água mantida no mesmo, de modo a atender ao abastecimento de uma metrópole de mais de dois milhões de habitantes. Assim, devido à política, adotada pelo DNOCS, com relação a operação de seus grandes reservatórios estratégicos, foi possível abastecer Fortaleza, de setembro de 1993 a maio de 1994, período em que entraram em colapso os mananciais que abastecem a Capital do Ceará.

Os açudes constituem equipamentos de transformação e de adaptação das potencialidades naturais, às demandas. O número de reservatórios de uma região depende, portanto, da carência e da variabilidade no tempo e no espaço dos recursos hídricos. Daí a região semi-árida Nordestina constituirse na região com maior densidade de açudes no País.

Como se percebe, a maneira de se estabelecer a sustentabilidade dos recursos hídricos da região semi-árida Nordestina, passa pela integração das políticas governamentais para construção de pequenos, médios e grandes açudes, e pela priorização do abastecimento das populações rurais, dispersas em toda a região, a partir de poços, cacimbas e cisternas.

Existe hoje um esforço, que está sendo desenvolvido pelos Governos Estaduais e pelo Governo Federal, de aumentar a utilização das águas acumuladas na região, garantindo o abastecimento das cidades situadas fora das margens de rios perenes e/ou perenizados, com a adoção de uma política agressiva de construção de adutoras regionais, que possibilitam o atendimento das populações urbanas, com água tratada de boa qualidade e de forma garantida.

São marcos significativos desta política, as adutoras construídas a partir do Rio São Francisco pelo Governo de Sergipe, a adutora de Salgueiro, construída pelo Governo de Pernambuco, a adutora da Ibiapaba construída pelo Governo do Ceará e a adutora do Oeste, em construção pelo DNOCS, no Estado de Pernambuco.

O Projeto Chapéu de Couro, desenvolvido pelo Governo de Sergipe, partiu do princípio que o homem do semi-árido nordestino pode conviver com a seca, desde que encarada como um fenômeno previsível, e não como inesperado ou imponderável.

Uma das premissas fundamentais em que se baseia o referido Programa é o da elaboração de um elenco de soluções integradas, visando a, antes de mais nada, o abastecimento garantido de águas às comunidades.

A topografia do semi-árido sergipano não é ideal para a construção de grandes acudes. Diante disso, o Programa Chapéu de Couro partiu para a construção de aguadas, que são pequenos açudes, para a perfuração de pocos artesianos e para a construção de adutoras.

A fonte de captação de água das principais adutoras construídas é o Rio São Francisco. Até 1993, tinham sido construídos 1.100 km de adutoras e estavam em execução mais 600 outros, totalizando 1.700 km de adutoras. A implantação dessas adutoras, transformou-se no meio mais eficiente de convivência com as secas, em Sergipe.

Quanto aos recursos hídricos subterrâneos, a explorabilidade de um aqüífero ou a viabilidade de transformar seu potencial em disponibilidade, depende, não somente do custo da água bombeada mas, igualmente, do benefício derivado de seu uso, dentro de um contexto sócio-econômico determinado.

O processo de planificação implica numa abordagem de desenvolvimento integrado dos recursos naturais, em geral, e hídricos - superficiais e subterrâneos - em particular. O desenvolvimento integrado tende a aproveitar, ao máximo, as características próprias de cada uma das fontes de recursos.

A disponibilidade atual de recursos hídricos da Região, da ordem de 97,3 bilhões de metros cúbicos por ano, se concentra basicamente nas águas de superfície, oriundas de rios perenes ou perenizados pela ação do homem.

Esta disponibilidade está regionalmente muito concentrada nas bacias dos rios São Francisco (UP 17) e Parnaíba (UP 6), que representam 66,64% e 9,32%, respectivamente, da disponibilidade total da Região.

A disponibilidade oriunda da exploração das águas subterrâneas, representam atualmente apenas 4,49% da disponibilidade total.

A exploração da água subterrânea na Região é mais intensa nas unidades de planejamento Parnaíba (UP 6), Mearim-Grajau-Pindare (UP 3), São Francisco (UP 17) e Fortaleza (UP 9).

A demanda total de água da Região é atualmente da ordem de 21,87 bilhões de metros cúbicos por ano, dos quais, 9,29 bilhões de metros cúbicos (42,48%) correspondem a demanda ecológica. A demanda ecológica, como anteriormente apresentado, corresponde a 10% da disponibilidade dos recursos hídricos superficiais das unidades de planejamento.

A demanda de água para os usos consuntivos atualmente é da ordem de 12,58 bilhões de metros cúbicos, dos quais, a irrigação é responsável por 49,28%. O restante é assim distribuído: 23,74% para a demanda urbana, 10,12% para a demanda agroindustrial, 7,40% para a demanda pecuária, 5,94% para a demanda dos distritos industriais, 3,52% para a demanda humana rural difusa.

Como se percebe, a irrigação é o principal consumidor das águas da Região. É na bacia do São Francisco (UP 17) que se encontra a maior área irrigada atualmente. O uso mais intenso, para irrigação, das águas do rio São Francisco pode, no futuro, acarretar conflito com o Setor Elétrico, pois, é nessa bacia que se localiza o maior parque gerador de energia elétrica da região Nordeste. A CHESF argumenta que é de 2,52 MW.ano a perda de geração de energia no seu sistema para cada 1 m3/s de água retirada a montante de suas usinas.

A maior parte dos despejos provenientes de industrias e núcleos urbanos situados no litoral ou próximos deste, são lançados diretamente no mar, prescindindo em princípio, de recursos hídricos para diluição. Tal fato não minimiza a importância de medidas preventivas e corretivas da poluição nas cidades costeiras porque eventualmente comprometem a orla marítima com altos índices de poluição.

Com base nos dados para as disponibilidades e demandas atuais, foram calculados os índices de sustentabilidade para cada unidade de planejamento.

A TABELA 5.1, estão apresentados os índices de sustentabilidade dos recursos hídricos para as unidades de planejamento para a situação atual.

Da análise dos índices de sustentabilidade, se constata que, na situação atual, já existe uma demanda reprimida nas unidades de planejamento Leste Potiguar (UP 13), Oriental da Paraíba (UP 14), Oriental de Pernambuco (UP 15), Bacias Alagoanas (UP 16), Vaza Barris - Real (UP 18) e Itapecuru (UP 19).

A análise dos indicadores da unidade de planejamento Fortaleza (UP 9) é o exemplo mais claro da importância da realização de análises deste tipo.

Como as demandas atuais da UP 9 são pouco inferiores às disponibilidades, é de se esperar que esta unidade de planejamento apresente problemas para o atendimento das demandas nos anos de seca.

A principal demanda de água da UP 9 é a destinada ao abastecimento humano, responsável por 57,80% da demanda total, vindo em seguida, a demanda para irrigação com 17,72% e a demanda dos distritos industriais com 14,45%.

UP	UNIDADE DE	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM. POT.
	PLANEJAMENTO		(HM3	3)	
01	TOCANTINS MARANHENSE	437	0,10	0,24	0,02
02	GURUPÍ	2295	0,15	0,12	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3414	0,23	0,15	0,03
04	ITAPECURU	1498	0,19	0,15	0,03
05	MUNIM-BARREIRINHAS	1714	0,22	0,11	0,02
06	PARNAÍBA	7240	0,23	0,20	0,05
07	ACARAÚ-COREAÚ	493	0,13	0,30	0,04
80	CURU	337	0,24	0,40	0,10
09	FORTALEZA	36	0,29	0,95	0,28
10	JAGUARIBE	1122	0,50	0,46	0,23
11	APODI-MOSSORÓ	83	0,27	0,62	0,16
12	PIRANHAS-AÇU	1094	0,57	0,30	0,17
13	LESTE POTIGUAR	-154	0,13	1,70	0,21
14	ORIENTAL DA PARAÍBA	-91	0,17	1,25	0,21
15	ORIENTAL DE PERNAMBUCO	-1583	0,08	5,86	0,44
16	BACIAS ALAGOANAS	-589	0,08	3,45	0,27
17	SÃO FRANCISCO	55434	1,58	0,15	0,23
18	VAZA-BARRIS	-84	0,09	1,76	0,16
19	ITAPICURU-REAL	-11	0,10	1,05	0,11
20	PARAGUAÇU-SALVADOR	622	0,21	0,65	0,13
21	CONTAS-JEQUIÉ	72	0,13	0,90	0,12
22	PARDO-CACHOEIRA	535	0,11	0,35	0,04
23	JEQUITINHONHA	467	0,09	0,15	0,01
24	EXTREMO SUL DA BAHIA	1048	0,20	0,26	0,05

Era natural, portanto, que o fornecimento de água para o abastecimento urbano apresentasse baixo nível de garantia, ou seja, trabalhasse com elevada probabilidade de falha no atendimento.

Atualmente, somente foram ativadas 29% das potencialidades, e as demandas equivalem a apenas 29% das potencialidades da unidade de planejamento.

Assim, o grave problema de racionamento de água, que resultou na necessidade da importação de água da bacia do Jaguaribe (UP 10), que enfrentou a Região Metropolitana de Fortaleza, no período 93/94 poderia ter sido evitado, se tivesse havido um planejamento de longo prazo para os re-

cursos hídricos, que identificasse problemas e atencipasse soluções, que, no caso dessa unidade de planejamento correspondia a ativação dos recursos hídricos locais, da própria unidade de planejamento.

Outro caso que merece destaque é o da unidade de planejamento Oriental de Pernambuco (UP 15).

A UP 15 abrange grande parte do Estado de Pernambuco e uma pequena faixa do norte de Alagoas. Os principais centros urbanos da unidade são as cidades situadas na Região Metropolitana de Recife e Caruaru.

Para a UP 15, a demanda de água para irrigação é responsável por 34,16% da demanda total da unidade. Em seguida vem, a demanda agroindustrial com 28,78% e a demanda para abastecimento urbano com 26,95%.

O atendimento das demandas para abastecimento urbano é crítico, tendo Recife, recentemente, enfrentado um rigoroso racionamento no abastecimento d'água de sua população.

A necessidade do aumento da disponibilidade desta unidade, de forma a atender as demandas é urgente, e deverá ser feita através da construção de novos barramentos, mas mesmo assim não será suficiente para atender as demandas sendo portanto necessário aumentar a exploração dos recursos subterrâneos e a transferência de recursos de outras unidades de planejamento.

Estudos detalhados da possibilidade de ativação das potencialidades da unidade de planejamento deverão ser promovidos, de forma a possibilitar a adoção de um plano de obras de longo prazo que enseje um permanente equilíbrio entre disponibilidade e a demanda d'água.

É preciso também que se adotem medidas urgentes no sentido de se preservar a qualidade dos mananciais da unidade de planejamento, pois é grande a carga potencialmente poluidoras principalmente das usinas de açúcar, destilarias de álcool, de engenhos de aguardentes, do parque industrial e dos núcleos urbanos.

De todas as unidades de planejamento, é a Oriental de Pernambuco, a que apresenta as piores condições de sustentabilidade de seus recursos hídricos, o que poderá resultar num fator restritivo ao seu desenvolvimento sócio-econômico.

Finalmente, a utilização de águas residuárias (reuso de águas) tratadas com tecnologia adequada, é uma alternativa importante a ser estudada, devida a escassez e deterioração dos recursos hídricos da Região Nordeste.

6 - ANÁLISE DA SUSTENTABILIDADE FUTURA SEGUNDO O CENÁRIO TENDENCIAL

Com base nos dados para as disponibilidades e demandas projetadas considerando o cenário tendencial, foram calculados os índices de sustentabilidade para cada unidade de planejamento.

As TABELAS 6.1 a 6.3, estão apresentados os índices de sustentabilidade dos recursos hídricos para as unidades de planejamento para os anos 2000, 2010 e 2020, respectivamente.

UP	UNIDADE DE PLANEJAMENTO	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM. POT.
	FLANESAMENTO		(HM3	3)	
01	TOCANTINS MARANHENSE	437	0,10	0,24	0,02
02	GURUPÍ	2295	0,15	0,12	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3414	0,23	0,15	0,03
04	ITAPECURU	1498	0,19	0,15	0,03
05	MUNIM-BARREIRINHAS	1714	0,22	0,11	0,02
06	PARNAÍBA	7240	0,23	0,20	0,05
07	ACARAÚ-COREAÚ	493	0,13	0,30	0,04
80	CURU	337	0,24	0,40	0,10
09	FORTALEZA	36	0,29	0,95	0,28
10	JAGUARIBE	1122	0,50	0,46	0,23
11	APODI-MOSSORÓ	83	0,27	0,62	0,16
12	PIRANHAS-AÇU	1094	0,57	0,30	0,17
13	LESTE POTIGUAR	-154	0,13	1,70	0,21
14	ORIENTAL DA PARAÍBA	-91	0,17	1,25	0,21
15	ORIENTAL DE PERNAMBUCO	-1583	0,08	5,86	0,44
16	BACIAS ALAGOANAS	-589	0,08	3,45	0,27
17	SÃO FRANCISCO	55434	1,58	0,15	0,23
18	VAZA-BARRIS	-84	0,09	1,76	0,16
19	ITAPICURU-REAL	-11	0,10	1,05	0,11
20	PARAGUAÇU-SALVADOR	622	0,21	0,65	0,13
21	CONTAS-JEQUIÉ	72	0,13	0,90	0,12
22	PARDO-CACHOEIRA	535	0,11	0,35	0,04
23	JEQUITINHONHA	467	0,09	0,15	0,01
24	EXTREMO SUL DA BAHIA	1048	0,20	0,26	0,05

UP	UNIDADE DE	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM POT.
	PLANEJAMENTO		(HM3)	
01	TOCANTINS MARANHENSE	419	0,10	0,28	0,03
02	GURUPÍ	2291	0,15	0,12	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3380	0,23	0,17	0,04
04	ITAPECURU	1486	0,19	0,16	0,03
05	MUNIM-BARREIRINHAS	1714	0,22	0,12	0,03
06	PARNAÍBA	6952	0,23	0,24	0,05
07	ACARAÚ-COREAÚ	629	0,17	0,28	0,05
08	CURU	363	0,26	0,41	0,11
09	FORTALEZA	31	0,34	0,96	0,32
10	JAGUARIBE	2331	0,85	0,34	0,29
11	APODI-MOSSORÓ	261	0,54	0,41	0,22
12	PIRANHAS-AÇU	1414	0,72	0,28	0,20
13	LESTE POTIGUAR	-212	0,14	1,90	0,27
14	ORIENTAL DA PARAÍBA	-49	0,22	1,10	0,24
15	ORIENTAL DE PERNAMBUCO	-1872	0,10	5,39	0,53
16	BACIAS ALAGOANAS	-812	0,09	3,95	0,25
17	SÃO FRANCISCO	54000	1,58	0,17	0,27
18	VAZA-BARRIS	-135	0,10	2,18	0,21
19	ITAPICURU-REAL	-69	0,10	1,32	0,14
20	PARAGUAÇU-SALVADOR	348	0,21	0,80	0,17
21	CONTAS-JEQUIÉ	-159	0,13	1,22	0,16
22	PARDO-CACHOEIRA	377	0,11	0,42	0,05
23	JEQUITINHONHA	461	0,09	0,16	0,01
24	EXTREMO SUL DA BAHIA	965	0,20	0,38	0,06

Da análise dos índices de sustentabilidade, se constata que, a situação já existente de demanda reprimida nas unidades de planejamento Leste Potiguar (UP 13), Oriental da Paraíba (UP 14), Oriental de Pernambuco (UP 15), Bacias Alagoanas (UP 16), Vaza Barris - Real (UP 18) e Itapecuru (UP 19), tende a se agravar. Começa a haver demanda reprimida também nas unidades de planejamento Paraguaçu-Salvador (UP 20) e Contas - Jequié (UP 21).

Para a unidade de planejamento Oriental de Pernambuco, a situação se tornará crítica, já que para atendimento das demandas programadas para o ano 2020, seria preciso ativar 70% das potencialidades da unidade de planejamento, o que técnica e economicamente é uma tarefa muito difícil.

UP	UNIDADE DE PLANEJAMENTO	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM. POT.
	LANCOAWEINTO		(HM3	3)	
01	TOCANTINS MARANHENSE	399	0,10	0,31	0,02
02	GURUPÍ	2.287	0,15	0,12	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3.337	0,23	0,18	0,04
04	ITAPECURU	1.469	0,19	0,17	0,03
05	MUNIM-BARREIRINHAS	1.710	0,22	0,12	0,03
06	PARNAÍBA	6,640	0,23	0,28	0,06
07	ACARAÚ-COREAÚ	691	0,18	0,29	0,05
80	CURU	371	0,27	0,43	0,11
09	FORTALEZA	19	0,37	0,98	0,36
10	JAGUARIBE	2.249	0,85	0,37	0,31
11	APODI-MOSSORÓ	246	0,55	0,45	0,25
12	PIRANHAS-AÇU	1.368	0,72	0,31	0,22
13	LESTE POTIGUAR	(268)	0,15	2,07	0,31
14	ORIENTAL DA PARAÍBA	(47)	0,25	1,09	0,27
15	ORIENTAL DE PERNAMBUCO	(2.1920	0,11	5,50	0,62
16	BACIAS ALAGOANAS	(1.034)	0,10	4,36	0,44
17	SÃO FRANCISCO	52.531	1,58	0,19	0,30
18	VAZA-BARRIS	(175)	0,10	2,49	0,24
19	ITAPICURU-REAL	(121)	0,11	1,55	0,16
20	PARAGUAÇU-SALVADOR	114	0,21	0,94	0,20
21	CONTAS-JEQUIÉ	(404)	0,13	1,55	0,21
22	PARDO-CACHOEIRA	429	0,11	0,48	0,05
23	JEQUITINHONHA	457	0,09	0,17	0,07
24	EXTREMO SUL DA BAHIA	877	0,20	0,38	0,08
T	OTAL	70.953	0,49	0,30	0,14

A situação é também preocupante para as unidades Jaguaribe (UP 10), Apodi - Mossoró (UP 11) e Piranhas-Açu (UP 12), tendo em vista que para as mesmas estão previstas uma ativação muito alta das suas disponibilidades até o ano 2020 e, caso não ocorra, deixarão estas unidades numa situação crítica.

Como se observa, de uma maneira geral, o ritmo de crescimento das demandas nas unidades de planejamento não é acompanhado pelo ritmo de crescimento das disponibilidades programadas.

Embora se consiga um relativo aumento da disponibilidade através da melhoria da eficiência do gerenciamento dos recursos hídricos, e uma redu-

UP	UNIDADE DE	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM POT.
	PLANEJAMENTO		(HM3	3)	
	TOCANTINS MARANHENSE	380	0,10	0,35	0,03
02	GURUPÍ	2.284	0,15	0,12	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3.293	0,23	0,19	0,04
04	ITAPECURU	1.451	0,19	0,18	0,03
05	MUNIM-BARREIRINHAS	1.705	0,22	0,12	0,03
06	PARNAÍBA	6.319	0,23	0,32	0,07
07	ACARAÚ-COREAÚ	752	0,20	0,29	0,07
80	CURU	377	0,29	0,44	0,13
09	FORTALEZA	5	0,40	0,99	0,40
10	JAGUARIBE	2.167	0,86	0,39	0,24
11	APODI-MOSSORÓ	231	0,55	0,49	0,27
12	PIRANHAS-AÇU	1.328	0,73	0,33	0,24
13	LESTE POTIGUAR	(315)	0,16	2,20	0,34
14	ORIENTAL DA PARAÍBA	(41)	0,28	1,07	0,30
15	ORIENTAL DE PERNAMBUCO	(2.491)	0,13	5,58	0,70
16	BACIAS ALAGOANAS	(1.252)	0,11	4,74	0,51
17	SÃO FRANCISCO	51.078	0,58	0,21	0,34
18	VAZA-BARRIS	(211)	0,10	2,76	0,28
19	ITAPICURU-REAL	(167)	0,11	1,74	0,19
20	PARAGUAÇU-SALVADOR	(87)	0,21	1,05	0,22
21	CONTAS-JEQUIÉ	(643)	0,13	1,87	0,25
22	PARDO-CACHOEIRA	388	0,11	0,53	0,06
23	JEQUITINHONHA	454	0,09	0,17	0,02
24	EXTREMO SUL DA BAHIA	792	0,20	0,44	0,09

ção na demanda principalmente pela adoção de métodos mais poupadores de água na irrigação, e pela redução das perdas nos sistemas de abastecimento d'água, é imprescindível que a Região disponha de um planejamento de longo prazo no campo dos recursos hídricos. Alias, os Setores de Energia, Transportes e Comunicação, já contam com planejamentos semelhantes a vários anos.

A adoção de um Plano de Recursos Hídricos para a Região, com horizonte pelo menos decenal, nele estabelecidas as prioridades regionais, e definidas claramente as obras que deveriam ser executadas pelo Governo Federal e as que ficariam para serem executadas pelos Governos Estaduais, daria um ordenamento importante à construção de obras hídricas. É de se

esperar que com a adoção deste Plano, se restringisse a construção de obras hídricas apenas as de prioridade efetiva.

Não é demais enfatizar que um Plano desta natureza precisa ser discutido com todos os setores envolvidos e, fundamentalmente, contar com o apoio da sociedade para sua execução.

Imagina-se ser a bacia do Rio São Francisco onde provavelmente, ocorrerão os principais conflitos de uso d'água na Região. Resolveu-se fazer uma análise do seu comportamento, baseada nos dados do PLANVASF.

A bacia do São Francisco (UP 17) é a maior unidade de planejamento em estudo, ocupando uma área de 640.000 km2, dos quais, 487.000 km2 dentro do Nordeste da SUDENE.

A demanda de água para irrigação, na área em estudo, assume papel preponderante, por constituir-se no principal uso consuntivo.

Segundo o PLANVASF, a área irrigada na Bacia do São Francisco em 1988 é estimada em 209.400 ha. O Programa de Irrigação proposto pelo PLANVASF prevê a implantação até o ano 2000, de 170 projetos, com uma área total de 593.821 ha, totalizando uma área irrigada em operação no ano 2000, de 803.221 ha.

Embora o PLANVASF tenha afirmado que o Programa, previsto para ser implantado de 1989 a 2000, não oferece perigo de incompatibilidade com o setor de geração de energia elétrica, não é está a visão do Sistema Elétrico sobre o assunto.

O Setor Elétrico entende que a retirada de água para irrigação na bacia do São Francisco poderá vir a ter uma significativa influência nas condições de atendimento ao mercado de energia elétrica, na medida em que contribuirá para redução da disponibilidade de geração das usinas hidrelétricas, já que o desvio de água para irrigação, a montante de um aproveitamento hidrelétrico, redundará em perda de energia, ao longo da cascata a jusante.

Ressalte-se, que as usinas hidrelétricas da CHESF foram concebidas, fundamentalmente, para aproveitar a água na geração de energia elétrica.

O trabalho intitulado "AVALIAÇÃO DO IMPACTO DOS PROGRAMAS DE IRRIGAÇÃO NA OFERTA DE ENERGIA ELÉTRICA DA REGIÃO NOR-DESTE", elaborado por Soares et alii (1992), afirma que:

"Até o ano de 1986, não se considerava nenhuma retirada de água para irrigação nos estudos de Planejamento da Geração do Setor Elétrico.

A instituição do PROINE em janeiro de 1986, com metas de irrigar 1 milhão de hectares no período 1986-1991, na região Nordeste, dos quais cerca de 550 mil hectares localizados na bacia do São Francisco levou o Setor Elétrico e, particularmente a CHESF, a considerar as retiradas de água para irrigação nos estudos de Planejamento Decenal da Geração do Sistema Interligado Norte/Nordeste, a partir do Ciclo de Planejamento de 1987".

O conflito potencial de uso entre a atividade de irrigação e o Setor Elétrico, assume atualmente, novos contornos, com a disposição do Governo Federal de implementar o Projeto da Transposição de Águas do São Francisco para algumas bacias dos Estados do Ceará, Paraíba e Rio Grande do Norte, já que surge um novo conflito potencial para a utilização das águas do rio São Francisco que é o de irrigar, dentro ou fora da bacia.

Como o Projeto da Transposição do São Francisco é objeto de um estudo específico do Áridas, os impactos desta Transposição, não foram objeto de análise pelo presente trabalho.

Um ponto que merece também ser enfocado diz respeito às previsões de implantação de novas áreas irrigadas.

É importante se ter em mente que se a previsão da implantação de novas áreas irrigadas não se desenvolver conforme o previsto, pode levar o Setor Elétrico a antecipar investimentos desnecessários; por outro lado, se houver uma aceleração não prevista na implantação de novas áreas irrigadas na bacia, pode vir a acarretar um aumento da probabilidade de déficits no suprimento de energia (racionamento).

Admitindo uma demanda unitária de 20.750 m3/ha/ano, como o PLANVASF considerou, a demanda total de água requerida, abrangendo as áreas atualmente irrigadas e as projetadas, num total de 803.221 ha, será de 16,7 bilhões de m3/ano. Admitindo também que 30% desse volume volta ao rio, por drenagem dos terrenos irrigados, o consumo efetivo será cerca de 11,7 bilhões de m3/ano, que corresponde a cerca de 12,5% da vazão anual do Rio São Francisco em Traipú.

Como se observa, o principal conflito de uso da bacia do Rio São Francisco é entre um uso consuntivo (irrigação) e um não consuntivo (geração de energia elétrica).

A apresentação de situação da bacia do Rio São Francisco bem evidencia, como os principais Setores envolvidos (Elétrico e Irrigação) desenvolvem suas programações sem que exista um esforço maior de compatibilizar os interesses conflitantes envolvidos.

7 - ANÁLISE DA SUSTENTABILIDADE FUTURA SEGUNDO O CENÁRIO DESEJÁVEL

Os dados da situação atual do abastecimento d'água de áreas urbanas, mostram que existem ainda 123 sedes municipais na Região que não contam com sistemas de abastecimento de água.

Se somarmos a estes números, as cidades que contam com sistemas ligados a fontes hídricas que entram em colapso sempre que ocorrem anos de inverno irregular, a situação do abastecimento de água das cidades Nordestinas é uma questão por resolver.

Ressalte-se que até mesmo as grandes cidades da Região, como Recife e Fortaleza, ainda não resolveram de forma adequada seus problemas de abastecimento.

Nas cidades atendidas com sistemas de abastecimento de água, o coeficiente de atendimento, definido como a relação população atendida / população urbana das cidades, é em média de 79,05% para a Região. O coeficiente de atendimento médio das capitais é de 87,99% e o das cidades do interior é de 76,24%.

Destaque-se que o coeficiente de atendimento das cidades do interior do Ceará é de apenas 43,05%, o que explica, em parte, a necessidade constante de utilização de carros-pipas mesmo em anos de precipitações normais.

Quanto ao índice de faturamento, relação entre o volume de água faturado e o volume de água produzido, é baixo, para as companhias estaduais de saneamento sendo, em média, da ordem de 50,24%, o que indica um elevado nível de perdas, perdas estas que podem ser em muito reduzidas com a maciça implantação de equipamentos micromedidores.

Assim, é fundamental que haja um esforço conjunto dos Governos Federal, Estaduais e Municipais, visando a reverter esta situação, levando água, na quantidade e qualidade adequadas, para todas as cidades da Região. Ressalte-se, que sendo prioritário o uso da água para o abastecimento humano deve-se reservar desde antes as demandas para este abastecimento, em qualquer cenário a ser considerado.

O abastecimento da população rural, dispersa em todo a Região, deve ser realizado, prioritariamente, através de poços, cacimbas e cisternas, como forma de garantir a existência de um ponto d'água permanente para o abastecimento dessa população, tornando menos freqüente a utilização de carros-pipas para seu atendimento. É preciso que o atendimento dessa demanda seja objeto de preocupação dos vários níveis de governo, no sentido de se

priorizar a perfuração de poços públicos nas regiões que utilizam com maior freqüência, os carros-pipa.

A irrigação é a atividade mais consumidora de água na Região, seja na situação atual, como na situação projetada.

A demanda anual de água para irrigação, considerada no presente estudo, foi de 18.000 m3/ha, admitindo-se que 30% desse volume volte ao rio, pela drenagem dos terrenos irrigados.

No cenário tendencial é prevista que a área irrigada da Região passe dos atuais 491.987 ha para 1.151.631 ha, no ano 2020, ou seja, que cresça 134%.

Embora esta meta seja modesta, implicará na necessidade de ampliação da disponibilidade atual dos recursos hídricos, para seu atingimento.

No presente estudo, não se utilizou o coeficiente redutor de área cultivada nas projeções das demandas para irrigação. O coeficiente redutor de área cultivada é a relação entre as áreas efetivamente ocupadas e as potencialmente disponíveis. O valor indicado para este coeficiente pelo PLANVASF é de 0,75. Entretanto estudos realizados tem indicado valores entre 0,30 e 0,52 para a área irrigada na bacia do São Francisco. Com a utilização deste coeficiente as demandas para irrigação são efetivamente menores.

Finalmente, é importante fazer-se a revisão da programação de implantação de novos reservatórios, pois segundo o cenário tendencial atual, haverá demanda reprimida em muitas unidades de planejamento no ano 2020, para as quais, ainda pouco ativadas foram suas potencialidades.

8 - ANÁLISE DA SUSTENTABILIDADE FUTURA SEGUNDO O CENÁRIO DE OCORRÊNCIA DE UMA MUDANÇA CLIMÁTICA NA REGIÃO

Se ocorrer mudanças climáticas na região Nordeste, estas afetarão o projeto, a construção e a operação de seus sistemas de abastecimento de água para os diversos usos.

O cenário mais desfavorável, elaborado por Nobre (1994), para desvios de temperatura, precipitação e umidade de solo sobre o Nordeste do Brasil, nos anos 2000, 2010 e 2020, devido ao aquecimento global decorrente do acúmulo de gases de efeito estufa na atmosfera, está apresentado na TABELA 8.1.

TABELA 8.1 - CENÁRIO PARA DESVIOS DE TEMPERATURA,
PRECIPITAÇÃO E UMIDADE DO SOLO SOBRE O
NORDESTE DO BRASIL NOS ANOS 2000, 2010 E 2020
DEVIDO AO AQUECIMENTO GLOBAL DECORRENTE
DO ACÚMULO DE GASES E DE EFEITO
ESTUFA NA ATMOSFERA

VARIÁVEL		ANO	
	2000	2010	2020
TEMPERATURA (oC)	0,6	1,7	2,9
UMIDADE DO SOLO (mm)	- 3,4	- 10,3	- 17,1
PRECIPITAÇÃO (%)	- 2,1	- 6,4	- 10,7

Fonte: Cenário de mudanças climáticas sobre o Nordeste, Paulo Nobre, Projeto Áridas, 1994.

Segundo ainda Nobre (1994), há indicações, também, no sentido de que as chuvas sobre as regiões tropicais se tornariam mais intensas e episódicas, o que traria conseqüências para a quantidade dos recursos hídricos, umidade e erosão do solo, inundações, entre outras.

Quanto a probabilidade de ocorrência de seca sobre o Nordeste que, com base nos registros históricos sobre a ocorrência de seca sobre a região nos últimos 400 anos, se situa em torno de 20% (Magalhães, 1994), estimando-se que aumentará na mesma proporção em que aumente a temperatura do ar, ocasionando maior número de secas agrícolas.

Numa análise preliminar, a ocorrência deste cenário, poderá vir a provocar os seguintes efeitos sobre os recursos hídricos da Região:

- aumento da demanda de água para irrigação na Região, devido à diminuição da umidade no solo e à elevação da evapotranspiração da vegetação;
- diminuição da disponibilidade de água dos reservatórios construídos na Região, provocada pelo aumento das sangrias devido ao aumento na intensidade das precipitações e a diminuição do total anual de chuvas, e pelo aumento da evaporação nos espelhos líquidos dos reservatórios decorrentes do aumento da temperatura do ar à superfície;

Poderá haver ainda um aumento no coeficiente de escoamento superficial - run off - decorrente do aumento da intensidade das precipitações.

Ressalte-se, que mesmo considerando que a variabilidade internada do clima sobre a Região Nordeste do Brasil permaneça inalterada, durante

os próximos vinte e cinco anos, existem vários fatores antrópicos que poderão vir a afetar a disponibilidade dos recursos hídricos para as atividades humanas, agrícolas e industriais na Região. Assim, é possível que a disponibilidade de água venha a diminuir em função da redução da cobertura vegetal provocada pela ação antrópica.

Um solo com pouca vegetação costuma ser mais impermeável, concorrendo para que as chuvas possam causar fortes erosões e para a diminuição da alimentação do lençol freático.

Um desflorestamento, além de acentuar as condições de erosão da bacia, pode causar maior irregularidade na distribuição dos deflúvios, o que pode ser compensado com a construção de reservatórios de regularização de enchentes e de estiagens.

O aumento da erosão na bacia, tenderá a provocar aumento no assoreamento dos reservatórios existentes, diminuindo suas capacidades de acumulação, e por conseguinte, seus volumes disponíveis anuais e de suas vidas útil.

A degradação da qualidade das águas provocadas principalmente pelo retorno das águas de irrigação e pelo lançamento de efluentes industriais e domésticos também provocará uma diminuição na disponibilidade de água, devido à restrição de seu uso.

Assim, na análise da sustentabilidade futura dos recursos hídricos, é fundamental que se leve em conta, também, o fator antrópico de degradação ambiental.

No presente estudo, para avaliação da sustentabilidade dos recursos hídricos da Região, num cenário de mudança climática e de ação antrópica desfavoráveis, procurou-se fazer uma avaliação da sensibilidade dos indicadores de sustentabilidade dos recursos hídricos, para duas hipóteses:

- aumento de 5% nas demandas, combinado com a correspondente redução, também, de 5% nas disponibilidades;
- aumento de 10% nas demandas, combinado com a redução também, de 10% nas disponibilidades.

Com base nos dados para as disponibilidades e demandas projetadas, considerando o cenário de ocorrência de uma mudança climática na Região, foram calculados os índices de sustentabilidade para cada unidade de planejamento relativos as duas hipótese apresentadas.

Nas TABELAS 8.2 e 8.3, estão apresentados os índices de sustentabilidade dos recursos hídricos para as unidades de planejamento para o ano de 2020, para as duas hipóteses apresentadas.

TABELA 8.2 - ÍNDICES DE SUSTENTABILIDADE PARA O CENÁRIO DE MUDANÇAS CLIMÁTICAS COM AUMENTO DE 5% NAS DEMANDAS E DIMINUIÇÃO 5% NAS POTENCIALIDADES E DISPONIBILIDADES

UP	UNIDADE DE	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM. POT.
	PLANEJAMENTO		(HN	13)	
01	TOCANTINS MARANHENSE	341	0,10	0,38	0,04
02	GURUPÍ	2.138	0,15	0,14	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	3.049	0,23	0,21	0,05
04	ITAPECURU	1.347	0,19	0,20	0,06
05	MUNIM-BARREIRINHAS	1.596	0,22	0,14	0,03
06	PARNAÍBA	5.712	0,23	0,35	0,08
07	ACARAÚ-COREAÚ	683	0,20	0,33	0,07
80	CURU	328	0,29	0,49	0,14
09	FORTALEZA	(85)	0,40	1,20	0,44
10	JAGUARIBE	1.920	0,86	0,43	0,27
11	APODI-MOSSORÓ	198	0,95	0,54	0,30
12	PIRANHAS-AÇU	1.196	0,73	0,36	0,26
13	LESTE POTIGUAR	(357)	0,16	2,43	0,38
14	ORIENTAL DA PARAÍBA	(104)	0,28	1,18	0,21
15	ORIENTAL DE PERNAMBUCO	(2.670)	0,13	6,16	0,77
16	BACIAS ALAGOANAS	(1.348)	0,11	5,24	0,57
17	SÃO FRANCISCO	47.134	1,58	0,24	0,37
18	VAZA-BARRIS	(234)	0,10	3,95	0,11
19	ITAPICURU-REAL	(198)	0,11	1,93	0,21
20	PARAGUAÇU-SALVADOR	(268)	0,21	1,16	0,24
21	CONTAS-JEQUIÉ	(749)	0,13	2,07	0,27
22	PARDO-CACHOEIRA	325	0,11	0,58	0,02
23	JEQUITINHONHA	422	0,09	0,29	0,02
24	EXTREMO SUL DA BAHIA	689	0,20	0,12	0,02
T	OTAL	61.064	0,49	0,36	0,18

Da análise dos índices de sustentabilidade para a hipótese de aumento nas demandas em 5% e diminuição nas potencialidades e disponibilidades em 5%, se constata, como era de se esperar, que a situação já existente de demanda reprimida nas unidades de planejamento Leste Potiguar (UP 13), Oriental da Paraíba (UP 14), Oriental de Pernambuco (UP 15), Bacias Alagoanas (UP 16), Vaza Barris - Real (UP 18) e Itapecuru (UP 19), tende se agravar. Começa a haver demanda reprimida também nas unidades de planejamento Fortaleza (UP 9), Paraguaçu-Salvador (UP 20) e Contas - Jequié (UP 21).

Para a unidade de planejamento Oriental de Pernambuco, a situação se tornará crítica, o que implicaria na necessidade de transposição de água de

TABELA 8.3 - ÍNDICES DE SUSTENTABILIDADE PARA O CENÁRIO DE MUDANÇAS CLIMÁTICAS COM AUMENTO DE 5% NAS DEMANDAS E DIMINUIÇÃO 5% NAS POTENCIALIDADES E DISPONIBILIDADES

UP	UNIDADE DE	DISP. -DEM.	DISP. /POT.	DEM. /DISP.	DEM. POT.
	PLANEJAMENTO		(HN	/ 13)	
01	TOCANTINS MARANHENSE	301	0,10	0,43	0,04
02	GURUPÍ	1.992	0,15	0,15	0,02
03	MEARIM-GRAJAÚ-PINDARÉ	2.806	0,23	0,24	0,05
04	ITAPECURU	1.242	0,19	0,22	0,04
05	MUNIM-BARREIRINHAS	1.486	0,22	0,15	0,03
06	PARNAÍBA	5.106	0,23	0,39	0,09
07	ACARAÚ-COREAÚ	614	0,20	0,36	0,07
80	CURU	280	0,29	0,54	0,26
09	FORTALEZA	(176)	0,40	1.22	0,48
10	JAGUARIBE	1.672	0,86	0,48	0,41
11	APODI-MOSSORÓ	164	0,55	0,60	0,33
12	PIRANHAS-AÇU	1.065	0,73	0,40	0,29
13	LESTE POTIGUAR	(399)	0,16	2,69	0,42
14	ORIENTAL DA PARAÍBA	(167)	0,28	1,30	0,36
15	ORIENTAL DE PERNAMBUCO	(2,849)	0,13	0,32	0,86
16	BACIAS ALAGOANAS	(1.444)	0,11	5,80	0,63
17	SÃO FRANCISCO	43.190	1,58	0,26	0,41
18	VAZA-BARRIS	(257)	0,10	3,38	0,34
19	ITAPICURU-REAL	(229)	0,11	2,13	0,23
20	PARAGUAÇU-SALVADOR	(449)	0,21	1,28	0,27
21	CONTAS-JEQUIÉ	(856)	0,13	2,29	0,30
22	PARDO-CACHOEIRA	263	0,11	0,64	0,07
23	JEQUITINHONHA	386	0,09	0,21	0,02
24	EXTREMO SUL DA BAHIA	587	0,20	0,54	0,11
T	OTAL	54.332	0,49	0,40	0,20

outras unidades de planejamento, onde houve-se disponibilidade. Outras soluções, seriam a de inibir o aumento de demandas, através de medidas restritivas à implantação de novas áreas irrigadas, e o estímulo ao reuso das águas, por exemplo.

Para a hipótese de aumento nas demandas em 10% e diminuição nas potencialidades e disponibilidades em 10%, a situação de demanda reprimida deverá ser agravada nas unidades de planejamento já deficitárias.

O que preocupa mais, é que se para o cenário tendencial, no ano 2020, apenas para a unidade de planejamento Oriental de Pernambuco(UP 15), as

demandas programadas atingiriam mais de 30% das potencialidades da unidade, neste cenário, as unidades Fortaleza (UP 9), Apodi - Mossoró (UP 11), Leste Potiguar (UP 13), Oriental da Paraíba (UP 14), Bacias Alagoanas (UP 16), São Francisco (UP 17) e Vaza Barris (UP 18) também atingiriam este patamar.

O conflito de uso entre irrigação e geração de energia na bacia do São Francisco (UP 17), deverá ser agravado, em decorrência do possível aumento nas demandas para irrigação e da diminuição das disponibilidades.

9 - CONCLUSÕES E SUGESTÕES

Da análise dos indicadores de sustentabilidade para a situação atual e para os cenários tendencial, desejável e de mudanças climáticas, constatou-se e existência de várias unidades de planejamento, unidades estas que são constituídas por uma bacia ou conjunto de bacias, que apresentam situações de insustentabilidade dos seus desenvolvimentos, em rações de restrições de natureza hídrica quantitativas. Este quadro com certeza será agravado quando forem incorporadas restrições qualitativas para o uso dos recursos hídricos.

Ressalte-se a necessidade dos Governos Federal e Estadual desenvolverem esforços maiores para a ampliação do abastecimento d'água das cidades da Região tendo em vista que em 1991, ainda existiam 123 sedes municipais que não contavam com sistema de abastecimento de água.

O estudo da sustentabilidade do desenvolvimento da região Nordeste, do ponto de vista dos recursos hídricos, bem mostram a necessidade da Região dispor de um "Plano de Recursos Hídricos" de longo prazo.

O Plano proposto, deverá ser detalhado a nível de Estado, com a elaboração pelos Governos Estaduais de seus "Planos Estaduais de Recursos Hídricos".

O PLIRHINE - Plano de Aproveitamento Integrado dos Recursos Hídricos do Nordeste do Brasil, elaborado pela SUDENE em 1980, com financiamento da Secretária de Planejamento da Presidência da República - SEPLAN, através da Financiadora de Estudos e Projetos - FINEP, deve ser considerado como um marco de referência para a elaboração deste Plano e dos Planos Estaduais.

O objetivo principal do PLIRHINE estava relacionado com o equilíbrio e ordenação das demandas e disponibilidades de recursos hídricos, dentro do horizonte de planejamento considerado (ano 2000).

O Plano a ser elaborado, deverá orientar o processo de tomada de decisões com base em alternativas de ações que busquem o equilíbrio quantita-

tivo e qualitativo do Balanço demanda x disponibilidade, evitando que os recursos hídricos venham se converter em um fator limitante ao desenvolvimento econômico e social da Região Nordeste, incorporando os princípios básicos do desenvolvimento sustentável na sua elaboração.

O desenvolvimento dos recursos hídricos deverá ser portanto suficiente para alocar tais recursos, oportunamente, no tempo e no espaço, de modo a atender as solicitações das demandas projetadas.

Finalmente, o Plano Regional deverá também detalhar as ações que ficarão na responsabilidade do Governo Federal e as que ficarão na responsabilidade dos Governos Estaduais.

10 - REFERÊNCIAS BIBLIOGRÁFICAS

- 1. BARONI, M.. 1992, Ambigüidades e Deficiências do Conceito de Desenvolvimento Sustentável. in Revista de Administração de Empresas, 32 (2), pg. 14 24, São Paulo.
- 2. BNB. 1994, O Banco do Nordeste do Brasil e o Desenvolvimento da Energia Renovável no Nordeste Brasileiro. BNB, Fortaleza.
- 3. Ceará. 1992, Secretaria dos Recursos Hídricos. Plano Estadual de Recursos Hídricos. SRH, Fortaleza.
- 4. MAGALHÃES, Antônio Rocha. 1994, Projeto Áridas Resumo Executivo. Brasília DF.
- 5. MÜLLER, Sabine et alli. 1993, SOSTENIBILIDADE DE LA AGRICULTURA Y LOS RECURSOS NATURALES Bases para Estabelecer Indicadores. IICA/GTZ, San José, C.R..
- 6. NOBRE, Paulo. 1994, Cenários de mudanças climáticas sobre o Nordeste, Projeto Áridas.
- 7. O'RIORDAN, T., 1971, Perspectives on resources, management. London.
- 8. SOARES, Flávia Gama et alli. 1992, Avaliação do Impacto dos Programas de Irrigação na Oferta de Energia Elétrica da Região Nordeste. CHESF, Recife.

